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Abstract
1. Rapid expansion in the collection of large acoustic datasets to answer ecological 

questions has generated a parallel requirement for techniques that streamline 
analysis of these datasets. In many cases, automated signal recognition algorithms, 
often termed ‘call recognizers’, are the only feasible option for doing this. To date, 
most research has focused on what types of recognizers perform best, and how to 
train these recognizers to optimize performance.

2. We demonstrate that once recognizer construction is complete and the data pro-
cessed, further improvements are possible using intrinsic and contextual informa-
tion associated with each detection. We initially construct a call recognizer for the 
Night Parrot Pezoporus occidentalis using the r package monitor, and scan a test 
dataset. We then examine a number of intrinsic variables associated with each de-
tection generated by the recognizer, and several contextual variables associated 
with the species' environment and ecology, to determine if they might help predict 
whether a given detection is a true positive (target signal) or false positive (non-
target signal). We test several logistic regression models incorporating different 
combinations of intrinsic and contextual variables, selecting the best-performing 
model for application. We train the model, using it to calculate the probability 
each detection is a true or false positive.

3. Substituting this model-derived probability for raw recognizer score improved the 
recognizer's performance, reducing the number of detections requiring proofing 
by 60% to achieve a recall of 90%, and by 76% to achieve a recall of 75%.

4. This technique is applicable to any recognizer output, regardless of the underly-
ing algorithm. Application requires an understanding of how the recognizer algo-
rithm determines matches, and knowledge of a species' ecology and environment. 
Because advanced programming skills and expertise are not required to apply this 
technique, it will be particularly relevant to field ecologists for whom building and 
operating call recognizers is an element of their research toolbox, but not neces-
sarily a focus.
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1  | INTRODUC TION

The increasing availability of technology to collect and analyse acous-
tic data, particularly affordable automated recording units (ARUs), 
has seen a rapid expansion in this field of research and its applications 
for ecology and conservation (Shonfield & Bayne, 2017; Teixeira, 
Maron, & van Rensburg, 2019). The popularity of ARUs is largely due 
to their efficiency. Particularly for long-term deployments, it is much 
cheaper to purchase, deploy and maintain an ARU than a human 
observer (Digby, Towsey, Bell, & Teal, 2013; Williams, O'Donnell, & 
Armstrong, 2018). Unlike human observers, ARUs can be left in the 
field unattended for extended periods, limited only by the availability 
of power and memory. As solar panels and large capacity memory 
cards are now also relatively cheap, maintaining permanent acoustic 
recording stations at remote sites has become feasible.

The easy collection of copious data has advantages and dis-
advantages. Large acoustic datasets may contain powerful data 
(Magurran et al., 2010), but extracting that data can be challenging. 
There are several techniques available to efficiently analyse large 
acoustic datasets, the most suitable contingent on the nature of the 
signal of interest (Joshi, Mulder, & Rowe, 2017; Towsey et al., 2018). 
Increasingly, research has focused on techniques that automate the 
signal extraction process. This is typically performed using a signal 
detection algorithm, hereafter termed ‘call recognizer’ (Potamitis, 
Ntalampiras, Jahn, & Riede, 2014; Priyadarshani, Marsland, & 
Castro, 2018). For infrequent signals within large datasets, a call rec-
ognizer may be the only feasible solution.

There are several options for researchers wanting to construct 
a call recognizer. They vary in complexity, from commercial off-the-
shelf programmes such as Kaleidoscope (Wildlife Acoustics Inc.), 
to more recently, advanced machine learning algorithms (Koops, 
van Balen, & Wiering, 2014; Salamon & Bello, 2017), acoustic in-
dices (Towsey, Wimmer, Williamson, & Roe, 2014), and wave-
let-based approaches (Priyadarshani, Marsland, Juodakis, Castro, & 
Listanti, 2020). Although the computational processes behind each 
differ, the basic premise remains the same; a computer is trained to 
detect and evaluate acoustic signals by comparing them to a known 
target signal. Potential signals are classified depending on their sim-
ilarity to the target signal, with the user controlling the threshold at 
which a match is declared.

Understanding the impact of this threshold is critical in under-
standing the performance of a call recognizer. Setting a high threshold 
increases the precision of the recognizer, meaning a higher propor-
tion of matches will represent actual detections, or true positives. 
However, this increases the likelihood of false negatives; target sig-
nals that do not meet the threshold, for example, soft or distant calls. 
This reduces the recognizer's recall, or ability to identify all target 
signals within a dataset. Conversely, reducing the threshold ensures 
that more lower scoring target signals are returned as matches, but 

simultaneously returns more lower scoring non-target signals, or false 
positives. This increases the recognizer's recall, but also increases the 
proportion of non-target signals in the resulting dataset, thereby 
decreasing precision. This false positive/false negative trade-off is a 
well-known classification problem, with threshold choice driven by 
the relative cost of false positive or false negative errors.

Besides an obvious focus on which computational techniques 
create the most successful recognizers, research has also focused on 
the properties of training data that achieve the best results (Knight & 
Bayne, 2018; Priyadarshani et al., 2018). Because a call recognizer's 
output is dependent on how closely the signal of interest compares 
to the training data, efforts to improve a specific type of recognizer's 
performance have largely focused on this aspect of their develop-
ment. However, little research has focused on how post-processing  
could be used to derive improvements in overall performance. 
Typically, the output of a recognizer is a list of potential ‘detections’, 
each with associated intrinsic information derived from the call rec-
ognition process, for example a ‘score’ reflecting how similar the de-
tection is to the training data. There is also a number of contextual 
variables associated with each detection, such as time-of-day and 
geographic location, that are known to affect detectability (Horton, 
Stepanian, Wainwright, & Tegeler, 2015). Patterns in both intrinsic 
and contextual data could provide clues to predict whether a detec-
tion is actually a signal of interest.

In this paper, we outline a novel method to develop a model that 
uses both intrinsic and contextual information associated with a call 
recognizer's raw output to generate an improved output. We inten-
tionally present a detailed description of the process, because one 
of our aims is to demystify the process of automated call recognition 
for field ecologists, thereby encouraging them to perform their own 
analyses. Broadly, our process was to first construct a call recognizer 
for the Night Parrot Pezoporus occidentalis, then investigate relation-
ships between the intrinsic and contextual variables associated with 
the recognizer's output to establish if any could be incorporated into 
a model that predicts whether a detection is a true positive or false 
positive. Following a model development and selection process, we 
selected the best-performing model and tested whether this model 
improved recognizer performance.

2  | METHODS AND RESULTS

2.1 | Study species and data collection

The Night Parrot is a cryptic and extremely rare bird that formerly oc-
curred throughout arid central Australia (Higgins, 1999), but is now 
known from only a handful of sites. The species is relatively sedentary, 
and predictably vocal (Leseberg et al., 2019; Murphy, Silcock, Murphy, 
Reid, & Austin, 2017). They spend the day roosting in low, dense 
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vegetation, as pairs or small groups. The birds emerge at dusk to en-
gage in a brief period of calling before leaving their roost sites to feed. 
Birds occasionally return to their roost sites and call during the night, 
but typically return for another brief period of calling just before dawn. 
Night Parrot vocalizations are now relatively well known (Leseberg 
et al., 2019). Given this predictable calling behaviour, acoustic monitor-
ing has proven the most efficient technique for both monitoring the 
species at known locations, and detecting it at new locations.

Since 2016, Night Parrot calling activity at three long-term stable 
roost sites in western Queensland has been monitored using Song 
Meter 3 and Song Meter 4 ARUs (Wildlife Acoustics Inc.), fitted with 
standard external omnidirectional microphones. ARUs were set to 
record from sunset to sunrise, using the ARU's default gain settings. 
Most ARUs recorded at sampling rates of 24,000 Hz, or 48,000 Hz, 
although some recorded at 16,000 Hz. As required under the 
Nyquist–Shannon Sampling Theorem (Landau, 1967), these sampling 
rates are greater than twice the peak frequency of all Night Parrot 
calls of interest to this study.

2.2 | Call recognizer development and sound file  
analysis

We used the r package monitor (Katz, Hafner, & Donovan, 2016; R 
Core Team, 2018) to build a call recognizer for the Night Parrot. r is a 
programming language accessible to users without specialist program-
ming skills, and in a comparison with recognizers using machine learn-
ing methods and commercially available packages, monitor performed 
well (Knight et al., 2017). We used the technique outlined in Katz 
et al. (2016) to construct a series of binary point templates. Templates 
are created by clipping an example call from a sound file and creating 
a spectrogram (FFT transformation = Hann window, FFT size = 512, 
overlap = 0). A selection of cells of the resulting spectrogram is then 
classified as ‘on’ or ‘off’. ‘On’ cells are selected to represent the ex-
pected region of strongest signal for the call, while ‘off’ cells are placed 
strategically where no or little signal is expected (Figure 1).

Although Night Parrots have a variety of different calls, we fo-
cused on the bell-like and whistle calls, as these are the calls most 
likely to be heard in and around roost sites (Leseberg et al., 2019). 
These broad call types can be broken down further, and we con-
structed at least one template for each of the 10 specific call types 
known from the study area. We used example calls extracted from 
the long-term monitoring dataset, adding further templates until 
testing suggested that the recognizer could detect most local vari-
ation within these call types. The final recognizer used 31 differ-
ent templates. Because monitor requires template files and the 
sound files that will be scanned to have the same sample rate, these 
were downsampled or upsampled if required to a sampling rate of 
24,000 Hz. Qualitative testing confirmed that manipulating the files 
in this way had no apparent effect on results.

Before analysis, each sound file is converted to a spectrogram 
using the same parameters as were used to create the templates. 
Each template is then stepped along that spectrogram, and for every 

step a similarity score is assigned based on the difference between 
the amplitude detected in the ‘on’ cells, and the amplitude detected 
in the ‘off’ cells of the template. When plotted against time this re-
sults in a series of peaks, the recognizer returns a list of these peaks 
with their associated score. As some signals within the sound file are 
detected by more than one template, a buffer of 2 s was applied so 
only the highest scoring peak within any 2-s period was returned. 
Because Night Parrot calls are generally short, temporally discrete 
events, the risk of missing calls due to applying this buffer was low.

2.3 | Recognizer performance assessment

To evaluate recognizer performance, ninety 10-min field record-
ings known to contain Night Parrot calls were extracted from the 
long-term monitoring dataset. We used field recordings to ensure 
measured performance reflected what could be achieved on actual 
field recordings rather than a manufactured test dataset (Potamitis 
et al., 2014). We used recordings from nights that were either calm 
or with light winds, as wind noise significantly reduces both ARU 
and recognizer performance. While this imposes a limitation on the 
future data the results of this research can be applied to, based on 
the species' ecology and our experience at the study site, this limita-
tion is not onerous, and is one we are willing to accept to improve ef-
ficiency. To avoid overfitting, none of the field recordings contained 
calls that were used to train the recognizer. The dataset was balanced 
across the three long-term stable roost sites, and three discrete pe-
riods of the night: dusk, night and dawn. Recordings for the dusk pe-
riod occurred within 1 hr of sunset, recordings for the dawn period 
occurred within 1 hr of sunrise and recordings for the night period 
included any time in between the defined dusk and dawn periods. 
Using audio-editing public domain software Audacity (version 2.3.0, 
http://audac ity.sourc eforge.net/), each clip was viewed in a spectro-
gram (spectrogram settings: y-axis = 0–4,000 Hz, x-axis = 30 s, FFT 
transformation = Hann window, FFT size = 256), and listened to at a 

F I G U R E  1   An example of a binary point matching template for 
the Night Parrot ‘toot’ call, overlaid on the spectrogram of a ‘toot’ 
call. The central box with dotted outline represents the ‘on’ cells, 
and ideally contains most of the expected call energy. The shaded 
area represents the ‘off’ cells

http://audacity.sourceforge.net/
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consistent volume using a set of high-quality noise-cancelling head-
phones (Sennheiser PXC480). 1,850 definite Night Parrot calls were 
detected, ranging from loud calls made in close proximity to the re-
corder, to faint, distant calls, that could not be seen on a spectrogram 
and were only detectable by manual listening.

Each 10-min recording was then analysed using the call recog-
nizer, with the threshold score set to zero, so all peaks in the similar-
ity score were returned as ‘detections’. It is important to note that a 
‘detection’ in this sense is a return from the recognizer representing 
a prospective detection; it may or may not be an actual detection. 
The recognizer returned 31,437 detections from the 900-min dataset. 
These detections were compared to the manually extracted data, and 
each classified as either a true positive (an actual Night Parrot call) or 
false positive (not a Night Parrot call). The recognizer did not detect 
110 of the 1,850 calls in the dataset. These were added to the dataset 
and classified as false negatives. We assessed baseline performance 
by producing a precision-recall curve, and calculating the area under 
the curve (AUC; Figure 2). A precision-recall curve plots recall for each 
value of precision as the classification threshold is reduced, allowing 
assessment of the trade-off between the two parameters. Area under 
the curve of the precision-recall curve is the recommended univariate 
statistic for comparing call recognizers (Knight et al., 2017).

2.4 | Identification of potential intrinsic and 
contextual variables

We next considered what intrinsic and contextual information could be 
used to assess the likelihood that any given detection was a true positive 
detection. From the raw recognizer output, we extracted the follow-
ing intrinsic variables for each detection: the score associated with that 

detection (score); which template resulted in the detection (template); 
and the parent call type of that template (call_class). Score is the recogniz-
er's most easily interpreted raw output, with obvious predictive value.

A comparison of success rates for different values of call_class 
suggested these could have predictive value. The Night Parrot calls 
incorporated into this recognizer are generally either short or long. 
Short single notes are common components of other bird and insect 
calls occurring in the study area, increasing the probability that tem-
plates for short calls will generate false positives. Conversely, longer 
Night Parrot calls are relatively unique in the study area, meaning 
their templates are less likely to generate false positives (Table 1).

For each detection we clipped a 1.1 s segment of the original file 
that captured the precise time of that detection, then used r package 
seewave (Sueur, Aubin, & Simonis, 2008) to calculate the difference 
between the maximum amplitude and mean amplitude within the 
frequency range of the template that triggered the detection. Binary 
point matching compares sound energy within a series of designated 
‘on’ and ‘off’ cells for each template. Loud sounds within the same 
frequency range as the binary point template can result in high sound 
energy flooding both the ‘on’ and ‘off’ cells, and if slightly more en-
ergy is detected in the ‘on’ cells this will trigger a detection. Typically 
though, it will receive a relatively low score. We reasoned that if there 
was a large difference between the maximum and mean amplitude 
within the template's frequency range, and the detection received 
only a moderate score, this was likely to represent an example of ex-
cess sound energy flooding the template, and therefore a false posi-
tive. If a large difference in the maximum and mean amplitude within 
the template's frequency range resulted in a high score, the sound 
energy probably closely matched the ‘on’ cells of the template, and 
was more likely to represent a true positive. A plot of amplitude dif-
ference (amp_diff) against score confirmed this relationship (Figure 3).

F I G U R E  2   Precision-recall curves 
calculated using raw recognizer scores, 
including separate curves for each 
period (left) and site (right). The figures 
in brackets give the area under the curve 
(AUC) for each curve. A higher AUC 
indicates better recognizer performance

TA B L E  1   Success rates for different categories of call templates, with recognizer threshold set to zero. Three letter codes represent the 
different Night Parrot call types incorporated into the recognizer. Short call templates, particularly the ‘1di’ template, generate most false 
positives. Most of the long call templates perform well

Short calls Long calls

ddt too 1di 2di 3nt 1tr 2tr 2wh 4wh how

TRUE POS. 50 287 647 25 5 33 13 567 6 107

FALSE POS. 388 4,140 22,053 2,128 156 46 54 521 138 73
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We next considered potential contextual variables. All detec-
tions were classified according to which period (‘dusk’, ‘night’ and 
‘dawn’), and which site they were recorded from (‘site_1’, ‘site_2’, 
‘site_3’). Precision-recall curves were plotted and AUC calculated for 
each period and site, then compared to the recognizer's baseline pre-
cision-recall curve, to explore their influence on recognizer perfor-
mance (Figure 2). Recognizer performance varied between periods, 
performing best during the night, and most poorly at dusk. This is 
expected, given the likelihood of false positives is reduced during 
the night when diurnal birds are not calling. There was no apparent 
effect of site on recognizer performance. For each detection, we also 
noted which model of ARU (ARU_type) and which specific ARU (ma-
chine) recorded the detection, and in which of the 90 test files (file) 
the detection occurred.

2.5 | Model development procedure

Our aim was to determine whether a model-derived probability 
calculated using intrinsic and contextual variables could be sub-
stituted for the recognizer's initial score value, and achieve bet-
ter results. We chose a generalized linear mixed-effects model 
structure, to enable inclusion of both fixed and random effects. As 
our response variable was binary (true positive or false positive), 
models were fitted assuming a binomial response distribution, and 
a logit link function (logistic regression) using the lme4 package 
(Bates, Machler, Bolker, & Walker, 2015).

As the practical purpose of this model is to facilitate the process 
of sifting through recognizer outputs, the process of model building 

can be more informal than for research purposes that involve a pri-
ori questions. The approach to selecting the final model was to ini-
tially generate a comprehensive set of possible fixed and random 
effects and compare candidate models containing main effects and 
interactions for the fixed effect terms, together with the random 
effects. We then assessed the performance of the candidate mod-
els via summary statistics and selected the most promising ones for 
further development. We determined which variables and variable 
combinations were critical to those models’ performance. Finally, we 
re-evaluated the refined models before selecting the best perform-
ing model as the final model. Model selection was completed using 
the entire performance dataset.

2.6 | Fixed and random effects selection

As the aim was to apply the model developed using the performance 
dataset to any data collected at the study site, we limited fixed effects 
to those whose complete range of variation was represented in the 
performance dataset, and which could be determined a priori from 
the resulting raw recognizer output. Factors whose variation was not 
entirely represented in the performance dataset were included as ran-
dom effects, and not used in predictions. For example, as ARU_type for 
any data collected at the study site will be either SM3 or SM4, and both 
were adequately represented in the performance dataset, this could 
be included as a fixed effect. However, more than 80 individual ARUs 
have been used at the study site, and only a portion of these were 
represented in the performance dataset. As this portion represents a 
random sample from the set of possible ARUs, machine (representing 
the specific ARU used) is included as a random effect. This still allowed 
the variance associated with this factor to be captured and an allow-
ance made for it in the training phase, but only that level of variance 
determined during the training phase can be used when the model is 
applied to future data collected from any machine.

Data exploration revealed interactions were needed between 
score and both period and amp_diff, so these were initially included 
as a three-way interaction fixed effect. Because the relationship 
between a detection's score and the probability that the detection 
is a true positive is curved in the logistic scale, score was fitted as 
a quadratic term. Also included as fixed effects were call_class and 
ARU_type. As factors whose level will very likely be new for future 
datasets, site, file and machine were all included as random effects. 
The factor template can be established a priori from the raw results, 
but as it contains 31 levels and is nested within call_class, its predic-
tive power is likely to be limited. However, understanding its impact 
on model performance may still be important, so it was included as 
a random effect.

We initially tested a series of 16 models. Each model included 
all fixed effects, but varied in the combination of random effects. 
All possible combinations of the four random effects were tested, 
including a model with no random effects. Models were compared 
using both Akaike's information criterion (AIC) and Bayesian in-
formation criterion (BIC). AIC and BIC are statistics for comparing 

F I G U R E  3   Plot of the relationship between amplitude 
difference and score for each detection, categorized by detection 
classification (true positive or false positive). As predicted, 
detections with a higher amplitude difference but moderate to low 
score are mostly false positives
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relative model performance, with the primary difference being 
that BIC penalizes more heavily for model complexity (Burnham & 
Anderson, 2004). Four models stood out as having much lower AIC 
than the other 12 (Table 2). These four models also had a much 
lower BIC than the other 12 models. Examining the variance com-
ponents for each random effect revealed that file and template 
were the source of most variation in each of the four best-ranked 
models, with the contribution of both machine and site being lim-
ited (Table 3). Therefore, we retained file and template as random 
effects.

We next ran the model including all fixed effects and our cho-
sen random effects, before examining the significance of resulting 
individual fixed effect coefficients (Table 4). These suggest that 
the three-way interaction between period, score and amp_diff is not 
substantially influencing model performance, but that each of the 
two-way interactions between these variables should be retained. 
Call_class has an effect on model performance, but not consis-
tently across classes. Calls that are short have less influence on 
the model than calls which are long. To investigate this, we created 
two new variables based on call length. The variable call_length_1 
categorized detections based on the template that detects the call 
as either short or long, while call_length_2 categorized all detec-
tions based on the template that detects the call as either short, 
medium, or long. The influence of ARU_type is significant, but mar-
ginally so.

We tested a series of nine models, including all possible combi-
nations of the following fixed effects: score, period and amp_diff as 
either a three-way, or three separate two-way interactions; template 

category as either call_class, call_length_1 or call_length_2; and, with 
or without ARU_type. The random effects for file and template were 
retained for all models. The three best models had an AIC value no 
larger than one unit above the model with the minimum AIC (Table 5). 
However, the third ranked of these models had a much lower BIC 
than the other two, with ΔBIC > 30 between this model and the 
next ranked model by BIC. Given there was not clear support for one 
of these three models using AIC, we contend that the best-ranked 

Random effects AIC BIC Deviance log lik.
Resid. 
df

File + template + site 2,520.79 2,779.82 2,174.11 −1,229.40 31,406

Machine + file + 
template

2,520.96 2,779.98 2,174.03 −1,229.48 31,406

Machine + file + 
template + site

2,522.75 2,790.14 2,174.13 −1,229.38 31,405

File + template 2,528.47 2,779.14 2,172.61 −1,234.23 31,407

File + site 2,716.34 2,967.01 2,436.64 −1,328.17 31,407

Machine + file 2,716.37 2,967.04 2,436.45 −1,328.18 31,407

Machine + file + site 2,718.31 2,977.34 2,436.58 −1,328.16 31,406

File 2,722.61 2,964.93 2,434.75 −1,332.31 31,408

Machine + template 2,730.59 2,981.26 2,561.90 −1,335.30 31,407

Machine + template 
+ site

2,732.03 2,991.06 2,561.98 −1,335.01 31,406

Template + site 2,740.30 2,990.97 2,581.41 −1,340.15 31,407

Template 2,840.21 3,082.53 2,699.26 −1,391.10 31,408

Machine 2,955.80 3,198.11 2,873.55 −1,448.90 31,408

Machine + site 2,957.47 3,208.15 2,873.65 −1,448.74 31,407

Site 2,965.63 3,207.95 2,892.61 −1,453.82 31,408

Fixed effects only 3,066.66 3,300.62 3,010.66 −1,505.33 31,409

Abbreviations: AIC, Akaike's information criterion; BIC, Bayesian information criterion.

TA B L E  2   Summary statistics for 
all random effects models, ranked by 
Akaike's information criterion (AIC). 
There is strong support for the top four 
models, warranting further inspection of 
each component's variation within these 
models

TA B L E  3   Variance of each random effects component within 
each of the top four models used for random effects testing. The 
contribution of both machine and site are limited in each case, 
supporting the decision to retain only file and template for model 
simplicity

File + template + site Machine + file + template

Component SD Component SD

File 1.2177 File 1.2113

Template 1.2545 Template 1.2492

Site 0.6554 Machine 0.5789

Machine + file + template + site File + template

Component SD Component SD

File 1.2127 File 1.3584

Template 1.2538 Template 1.2222

Machine 0.2847

Site 0.5536
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model using BIC could be considered preferable. We selected this 
model for use in practice.

2.7 | Model testing

To test the model, we partitioned the performance dataset, using 
one-third of the files, balanced by site and period, to train the 

model. The remaining files were set aside to test the model. After 
training, the model was used to predict whether each detection 
in the test dataset was a true positive. Because we would not 
know the file in advance for a future dataset, this random ef-
fect was predicted using the estimate from model training. The 
predicted probability for each detection was then substituted for 
raw recognizer score, and the precision-recall curves replotted 
(Figure 4).

The precision-recall curves for the combined data, and for each 
period, demonstrate that substituting model-derived probability for 
raw score results in an increased AUC overall (AUC = 0.89 for model- 
derived probability, and AUC = 0.76 for raw score), meaning that 
the overall recognizer performance is improved. As expected, this 
improvement is modest for the night period, but marked for both 
the dusk and dawn period, with AUC improving by 0.10 and 0.15 
respectively.

To quantify the practical improvements resulting from this 
modelling procedure, we investigated the number of detections 
requiring proofing to achieve a specific level of recall. Recall is of 
particular importance because the recall of a recognizer equals 
the probability that a species will be detected if it is available for 
detection, an important component of the overall probability of 
detection (Pollock et al., 2004). Furthermore, it is important for 
rare species research because prioritizing recall maximizes the 
likelihood of detecting the species if it is available in the acoustic 
dataset. This emphasis on recall manifests itself in the increased 
number of detections that require proofing to achieve the in-
creased level of recall.

We calculated the mean number of false positive detec-
tions requiring proofing per 10-min file in the test dataset to 
achieve a specific recall; a proxy for the amount of time an an-
alyst needs to spend proofing recognizer output. We initially 
calculated the score cut-off that achieved a specified recall for 
both raw score, and for the model-derived probability. Because 
model-derived probability incorporates period as a fixed effect 
in the calculation, cut-off scores for a specific value of recall 
under the model-derived probability may vary between peri-
ods. Accordingly, the model-derived probability cut-off for each 
recall threshold was calculated separately for each period using 
only the test dataset to avoid overfitting. Using these data, 
we also simulated for both raw score and model-derived prob-
ability, how many false positive detections would need to be 
checked during a complete 12-hr night of acoustic data, with 
1 hr of ‘dusk’, 10 hr of ‘night’ and 1 hr of ‘dawn’ recordings to 
be assessed.

The model-derived probability markedly reduced the number of 
false positives that needed checking to achieve each level of recall 
tested (Table 6). This improvement is most pronounced during the 
night period, and at lower levels of recall. However, even at 90% re-
call, if using the model-derived probability as a substitute for score, 
the number of false positives that would need checking during 
an entire night of acoustic data is 40% of what would need to be 
checked if using the raw score.

TA B L E  4   Significance of the fixed effect coefficients for the 
model incorporating all fixed effects. Of particular note are the 
consistent differences between short calls (‘ddt’, ‘1di’, ‘2di’, ‘3nt’, 
‘too’) and long calls (‘1tr’, ‘2tr’, ‘2wh’, ‘4wh’, ‘how’)

Fixed effect Estimate SE z value Pr(>|z|)

(Intercept) −7.271 0.702 −10.356 0.000

period ‘dusk’ 1.623 0.543 2.986 0.003

period ‘night’ 0.970 0.588 1.650 0.099

score2(1) 133.608 56.883 2.349 0.019

score2(2) −494.164 59.590 −8.293 0.000

amp_diff 0.801 0.086 9.258 0.000

ARU_type ‘SM4’ −1.367 0.416 −3.288 0.001

call_class ‘1tr’ 5.001 1.469 3.404 0.001

call_class ‘2di’ 0.054 0.787 0.068 0.945

call_class ‘2tr’ 5.767 1.868 3.088 0.002

call_class ‘2wh’ 3.352 0.763 4.391 0.000

call_class ‘3nt’ 1.972 1.198 1.645 0.100

call_class ‘4wh’ 3.824 1.449 2.638 0.008

call_class ‘ddt’ 2.254 1.348 1.673 0.094

call_class ‘how’ 5.211 1.323 3.938 0.000

call_class ‘too’ 1.597 0.984 1.623 0.105

period ‘dusk’: 
score2(1)

173.151 71.366 2.426 0.015

period ‘night’: 
score2(1)

−63.386 107.565 −0.589 0.556

period ‘dusk’: 
score2(2)

198.939 73.734 2.698 0.007

period ‘night’: 
score2(2)

−214.750 102.485 −2.095 0.036

period 
‘dusk’:amp_diff

−0.588 0.094 −6.288 0.000

period 
‘night’:amp_diff

−0.428 0.106 −4.024 0.000

score2(1):amp_diff −7.443 5.904 −1.261 0.207

score2(2):amp_diff 34.896 5.888 5.926 0.000

period ‘dusk’: 
score2(1):amp_diff

9.761 7.708 1.266 0.205

period ‘night’: 
score2(1):amp_diff

27.259 12.111 2.251 0.024

period ‘dusk’: 
score2(2):amp_diff

−8.322 8.106 −1.027 0.305

period ‘night’: 
score2(2):amp_diff

5.248 11.050 0.475 0.635
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TA B L E  5   Summary statistics for the final set of nine models. Only fixed effects for each model are shown; the random effects for each 
model were file and template. There is strong support for each of the top three models by Akaike's information criterion (AIC), but the third 
of these (in bold) has much stronger support by Bayesian information criterion (BIC) and was selected as the final model

Fixed effects AIC BIC Deviance log lik. Resid. df

period * score2 * amp_diff + call_length_1 +  
ARU_type

2,522.12 2,705.94 2,171.67 −1,239.06 31,415

period * score2 * amp_diff + call_length_2 +  
ARU_type

2,522.60 2,714.78 2,169.74 −1,238.30 31,414

period * score2 + score2 * amp_diff + period *  
amp_diff + call_length_1 + ARU_type

2,522.84 2,673.25 2,180.75 −1,243.42 31,419

period * score2 + score2 * amp_diff + period *  
amp_diff + call_length_2 + ARU_type

2,524.54 2,683.30 2,179.03 −1,243.27 31,418

period * score2 * amp_diff + call_class +  
ARU_type

2,528.47 2,779.14 2,172.61 −1,234.23 31,407

period * score2 + score2 * amp_diff + period *  
amp_diff + call_class + ARU_type

2,529.69 2,746.94 2,182.30 −1,238.84 31,411

period * score2 + score2 * amp_diff + period * 
amp_diff + call_length_1

2,532.23 2,674.28 2,179.28 −1,249.12 31,420

period * score2 + score2 * amp_diff + period * 
amp_diff + call_length_2

2,533.67 2,684.07 2,177.83 −1,248.83 31,419

period * score2 + score2 * amp_diff + period * 
amp_diff + call_class

2,538.85 2,747.74 2,181.04 −1,244.42 31,412

F I G U R E  4   Precision-recall curves 
calculated for each period using raw 
recognizer scores (left), and model-derived 
probabilities (right). When using model-
derived probabilities, the increase in area 
under the curve is evident overall, and 
across all periods, meaning this approach 
improves recognizer performance

TA B L E  6   The mean number of false positives requiring proofing in a 10-min recording for a set level of recall, using either raw recognizer 
score (Score), or the model-derived probability (MDP). The final three columns present the number of false positives that would need 
proofing if analysing a 12-hr night of recordings, with the ‘%’ column representing the percentage of proofing, and therefore time required 
when using model-derived probability compared to raw score

Recall

Dusk Night Dawn 12-hr night

Score MDP Score MDP Score MDP Score MDP %

0.50 2.80 0.85 0.20 0.00 0.70 0.00 30.6 5.1 17

0.55 4.30 1.10 0.25 0.05 1.00 0.00 43.8 9.0 21

0.60 6.20 1.30 0.25 0.05 1.55 0.00 58.5 10.2 17

0.65 7.55 2.15 0.25 0.05 2.00 0.10 69.3 15.9 23

0.70 9.80 3.30 0.40 0.05 2.60 0.35 93.6 24.3 26

0.75 15.30 4.45 0.50 0.05 3.65 0.55 137.7 32.4 24

0.80 22.25 6.55 0.70 0.25 5.80 0.85 201.9 56.4 28

0.85 29.30 13.70 1.85 0.55 9.70 2.35 322.8 122.7 38

0.90 45.35 34.95 9.05 1.35 22.25 10.10 840.0 335.1 40
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3  | DISCUSSION

The method we have outlined demonstrates that intrinsic and contex-
tual information associated with a call recognizer's output can be used 
to improve the performance of that recognizer. This approach is com-
patible with any signal detection algorithm, not just binary point match-
ing as is the case here. While the improvements are revealed through 
the AUC of the precision-recall curve, this representation is somewhat 
abstract. The practical benefits of this approach are more clearly dem-
onstrated in the reduced effort required to achieve a specific recall. For 
practitioners using call recognizers to analyse large quantities of field 
recordings, the limiting factor is typically time, which manifests itself 
as the number of detections that can be manually proofed. However, 
while this technique does result in efficiencies, there are limitations.

3.1 | Raw recognizer performance and improvement

These improvements will only apply to detections within the recog-
nizer's output; it does not change the recognizer's ability to detect 
false negatives. False negatives occur for two reasons. The recognizer 
may detect some other signal that occurs concurrently with the call 
of interest and achieves a higher score, meaning the call of interest is 
missed. Such events are difficult to overcome. Alternatively, a call of 
interest may not match the training data. Post-processing techniques, 
as outlined here, will not improve recognizer performance in that re-
spect. This can only be overcome by updating the recognizer's train-
ing dataset to improve the probability the recognizer will detect that 
missed call. If new templates are added to the recognizer, the model 
selection process will need to be rerun, with sufficient training and 
test files added to model the impact of the new templates.

3.2 | Model application for different species and 
new sites

Even though the calls used to create this recognizer's templates were 
excluded from the training and test datasets, because the Night 
Parrot population at the study site is very small, it is likely calls from 
the same individuals were incorporated into the training and test 
datasets. There is a resultant risk of model overfitting. Additionally, 
the repertoire of this population is well-known (Leseberg et al., 2019), 
and the recognizer templates featured most of the variation that oc-
curs at the study site. It is possible this combination of factors has 
exaggerated the success of our model. In scenarios where the subject 
species does not have such a consistent repertoire, because it has a 
larger number of individuals, a more dynamic population, or greater 
variation in its calls, this technique will still be applicable provided this 
variation is incorporated into the training and test datasets.

The properties of the general soundscape, including likely 
non-target calls that occur in the dataset will also influence model 
applicability. For example, the model developed here could be rea-
sonably applied to other datasets from western Queensland, where 

Night Parrots are known to have similar calls to those in this dataset  
(N. P. Leseberg, pers. obs.), and where the suite of likely non-target 
species will also be similar. However, the model may not be as effec-
tive if applied to a dataset from Western Australia, where the suite 
of Night Parrot calls and likely non-target species are slightly differ-
ent to western Queensland. Testing on an annotated dataset would 
determine if the model does improve recognizer performance and by 
how much. Otherwise, the model selection and training process would 
need to be rerun using a performance dataset compiled from the new 
region of interest.

3.3 | Impact of model treatment of different 
call types

The fixed effect call_length_1 boosts the model-derived probability 
for longer calls, when compared to shorter calls. In a scenario where 
shorter calls predominate at a site, this may affect the recognizer's 
ability to detect birds at that site. It is likely that faint short calls are 
most affected. Because an ARU established at a prospective long-
term stable roost site will record a variety of short calls over time, 
the probability of at least some calls being detected by the recog-
nizer is high. Additionally, over long periods at long-term stable roost 
sites, there is typically a mix of long and short calls (S.A. Murphy & 
N.P. Leseberg, unpub. data), ensuring that the recognizer will detect 
birds if they are present. This may still be an issue if a short deploy-
ment limits the variety of calls that occur within the dataset.

An additional consequence of the differing treatment of call 
types by the model will be the distortion of potential distance effects. 
Researchers can extract distance information from acoustic data, 
using signal strength, or variables closely related to signal strength 
such as the call recognizer's raw score, as a proxy for distance from 
the recorder (Knight & Bayne, 2018; Lambert & McDonald, 2014). 
This information is then used in distance-sampling procedures, or for 
establishing survey effort parameters (Yip, Leston, Bayne, Solymos, 
& Grover, 2017). The mechanics of this modelling technique will con-
found any attempts to use the model-derived probabilities as a proxy 
for distance, because they are influenced by factors other than sig-
nal strength, whereas raw score is typically heavily dependent on 
signal strength (Knight & Bayne, 2018). For example, if ranked by 
model-derived probability, a faint long call is likely to rank higher 
than if it were ranked by raw score alone. If model-derived proba-
bility is being used as a proxy for distance from the recorder, this 
would be equivalent to the call being made closer to the recorder, 
an incorrect assumption that could distort conclusions around that 
call's likely distance from the recorder.

Depending on the aim of the distance-sampling approach, this 
issue could be overcome in several ways, although each has limita-
tions. Research could assess the relationship between model out-
puts and distance, although this is likely to vary across call types, 
and for a species like the Night Parrot would require a test dataset 
that would be almost impossible to collect. Alternatively, signal 
strength or raw score for a given detection could be extracted 
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after model application to determine distance data, although this 
will mean the calls extracted will be influenced by the model. 
Again, long calls are more likely to be extracted than short calls, 
possibly interfering with subsequent conclusions. A final option 
could be to first sort data by raw score, before applying the model 
to the subset of data whose raw score satisfies the distance sam-
pling criteria.

3.4 | Other parameters with potential 
predictive power

The modelling approach applied here was successful using a rel-
atively limited number of parameters, some that were particular 
to the subject species' biology, such as call_length_1 and period, 
while others were generic, such as amp_diff, ARU_type and the ran-
dom effects template and file. It is likely that a number of other 
parameters could be incorporated to further improve results. As 
Night Parrots call more frequently in response to local rain events 
(Murphy, Austin, et al., 2017), a variable quantifying antecedent 
rainfall could be an obvious inclusion. An emerging question in 
Night Parrot research is the merit of acoustic surveys at water 
points and likely feeding sites, compared to current protocols that 
focus solely on roosting habitat. If autecological research deter-
mines a consistent pattern of nocturnal activity, site resource (i.e. 
water point, feeding site, roosting site) could be included as a fixed 
effect in the model.

The predictable calling behaviour and site fidelity of the Night 
Parrot make it particularly suited to the approach we have outlined 
here, but with careful consideration, it will be applicable in other 
scenarios. Intrinsic variables related to raw recognizer output can 
be developed that are either species specific, as call type was here, 
or recognizer specific, as amp_diff was in this case, being relevant 
specifically to the binary point matching technique used in this rec-
ognizer. There are likely to be similar variables that could be devel-
oped for the numerous other recognizer algorithms. Improvements 
to the raw output for more advanced algorithms may not be as sig-
nificant as for the relatively basic binary point matching, but for 
field ecologists, any reduction in the time required to proof recog-
nizer returns will be beneficial. The contextual variables that could 
be trialled will relate to a species' biology and might include long-
term seasonal and short-term weather effects, habitat or other en-
vironmental parameters at both the local and landscape scale, and 
calling biology. The number of contextual parameters that could be 
tested is limited only by a researcher's ability to compile a perfor-
mance testing dataset that satisfactorily represents the variation in 
each parameter.

This technique's biggest advantages are its simplicity, and com-
patibility with any recognition algorithm. For the ecologist or practi-
tioner, call recognizer development is daunting, with high performing 
recognizers generally built using state-of-the-art techniques that 
in many cases require advanced programming skills and research 
time. The foundation of the post-processing technique we outline 

in this paper is a relatively straightforward procedure that can be 
completed using graduate level statistics. For that reason, it will be 
of particular use to practicing field ecologists looking to improve a 
simple recognizer, which may only be one part of a broader research 
project. It may also be applied to any state-of-the-art recognition 
algorithm to further improve results.
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