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a b s t r a c t

Species distribution modelling (SDM), a tool increasingly adopted to quantify geographic
range size, often predicts species’ distributions as static. However, habitat availability may
exhibit spatial and temporal variation when dynamic processes, such as fire, determine
suitability. Static SDM approaches may not satisfactorily represent this dynamic process.
We investigated the potential use of SDM to quantify dynamic habitat availability by
applying the MaxEnt SDM technique to model the habitat of the Carpentarian Grasswren
(Amytornis dorotheae), an endangered Australian passerine dependent on long unburnt
vegetation in a fire prone system. By adjusting a typical SDM approach to incorporate the
dynamic nature of fire, we modelled the spatio-temporal variation of suitable habitat over
12 years and compared it to a static modelling approach. Incorporating fire as a dynamic
process increased the importance of the fire variable to models (from <18% to >35% per-
mutation importance) and improved model performance, as evaluated by the AUC using
cross-validation. Our dynamic model revealed sizeable temporal variation in the area and
spatial arrangement of suitable habitat that was not apparent in the static model. This
result may partly solve the mystery of why the species occurs as widely separated pop-
ulations despite the presence of seemingly suitable intervening habitat. In areas where the
species is no longer found, habitat availability was less consistent due to frequent fire, and
fire refugia was more limited and isolated, when compared to sites with recent records.
These results demonstrate that, when compared to a static approach, a dynamic SDM
approach can lead to improved understanding of dynamic ecological processes, and their
impact on a species.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC
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1. Introduction

Understanding the distribution of a species, and the environmental variables that constrain it, is essential when evaluating
that species’ threat status and conservation requirements (Kukkala and Moilanen 2013; Kujala et al., 2018). Species distri-
bution modelling (SDM) is an established approach that uses environmental characteristics and known occurrence locations
to predict the spatial extent of suitable habitat, and therefore a species’ potential distribution (Pearson 2007). The outputs
from SDMs can provide information useful for conservation management (Pearson 2007; Villero et al., 2017), identifying
previously unknown sites of occurrence and mechanisms of population separation (Lu et al., 2012; Fois et al., 2018; Bertola
et al., 2019). SDMs typically combine static environmental predictors, or predictors that average environmental variability
over time, with a set of species occurrence records (Thuiller and Münkemüller 2010). However, it has been established that
these static models are unlikely to capture complex patterns of species occurrence when dynamic ecological processes are
present (Franklin 2010; Runge et al., 2015; Zurell et al., 2016; Williams et al., 2017a; Andrew and Fox 2020). Therefore, a static
SDM approach may not accurately estimate a species’ status if population size responds to significant changes in suitable
habitat through time (Purvis et al., 2000; Runge et al., 2015; Webb et al., 2017).

One approach to understanding dynamic distributions is to project an SDMmodel onto temporally explicit environmental
conditions. Numerous studies have used this approach to predict potential distribution shifts for species under future climate
scenarios (Kearney et al., 2010; Thuiller and Münkemüller 2010; Austin and Van Niel 2011; Reside et al., 2012b). More
recently, distribution modellers have revealed temporal variation in suitable habitat at shorter time scales in response to
dynamic resource availability (Osborne and Su�arez-Seoane 2007; Runge et al., 2015;Webb et al., 2017; Andrew and Fox 2020).
For example, Runge et al. (2015) created a series of time sliced layers depicting temporally explicit weather conditions that
drive resource availability for many of Australia’s nomadic, arid zone avifauna. Dynamic habitat availability is relevant to
many species worldwide, and we propose dynamic modelling, using time-sliced predictions, is potentially applicable to
understanding species responses to ecological disturbance.

The tropical savannas of Australia’s north are an environment that experiences conditions that are highly variable at the
local scale but broadly predictable at the landscape scale (Williams et al., 2017b). In the open grassy woodlands that dominate
the region, wet-season rainfall is followed by a hot dry-season, allowing for a cycle of prolific growth and curing and creating
ideal conditions for fire (Russell-Smith and Edwards 2006). Large proportions of this biome burn each year (Russell-Smith
et al., 2003). While some species use recently burnt habitat, others are dependent on vegetation structure only provided
by late-successional habitat (Clarke 2008; Connell et al., 2017). For both cases, the occurrence of fire will result in spatio-
temporal shifts in habitat suitability. For some systems, such as those dominated by the genus of highly flammable grass
Triodia, the return to their pre-fire state may take several years. Species that depend on late successional habitat within these
systems are therefore vulnerable to the impacts of frequent fire (Horton 2011). Changes in the nature and frequency of fire
across northern Australia is a known threatening process that has been implicated in changes to species assemblages
(Woinarski and Legge 2013) and declines of many species (Garnett et al., 2011).

One such species is the Carpentarian Grasswren (Amytornis dorotheae), a small passerine (16e17.5 cm; 21e25 g), endemic
to northern Australia (Higgins 2001). It occurs in four recognised sub-populations that each occupy distinct localities
stretching from the McArthur River in the Northern Territory, southeast to Mount Isa in north-western Queensland
(Harrington andMurphy 2016). Long unburnt and therefore structurally complex Triodia hummocks provide the Carpentarian
Grasswren with foraging substrates, nest sites and refuge from predators and bad weather (Higgins 2001; Perry et al., 2011;
Harrington and Murphy 2016). Altered fire regimes that reduce the availability of long unburnt habitat are assumed to be the
species’ main threat, and as a result, it has been listed federally as endangered (Australian Government 2019). However, the
link between fire and population decline is largely circumstantial (Harrington and Murphy 2016) and a more thorough
exploration of this relationship is needed to better define the species’ population trajectory and true conservation status.

Fire is known to influence the distributions of many species, and the most appropriate measures of fire to consider when
modelling a species’ distributionwill depend on the species of interest (Reside et al., 2012a; Tucker et al., 2012; Watson et al.,
2012; Connell et al., 2017; Kelly et al., 2017). Temporal summaries like fire frequency and inter-fire interval have been used to
account for fire regimes in SDM (Kelly et al., 2017). Single predictions derived from these measures of fire may only identify
areas that have fire regimes broadly suitable for a species persistence, but may fail to identify suitable habitat at any given
point in time. Alternatively, a time since fire layer can account for a species preference for particular post-fire successional
habitat in SDM (Connell et al., 2017; Lee et al., 2018). However, a single SDM prediction using time since fire depicts habitat at
an exact point in time and does not reflect the variation of this habitat through time.

To our knowledge, using SDM to investigate the dynamic nature of suitable habitat over successive years in response to
annual fire occurrence has not been explored. This research aims to address uncertainty surrounding the species’ distribution,
and investigate the role habitat dynamics plays in shaping that distribution, by modelling Carpentarian Grasswren habitat
using both static and dynamic approaches. Using the Carpentarian Grasswren as a case study, we develop an approach to
evaluate habitat dynamics in response to fire occurrence using Maximum Entropy species distribution modelling (MaxEnt)
(Phillips et al., 2006). For the purpose of this research, we define a dynamic modelling approach as one that is developed and
applied over space and time. Carpentarian Grasswrens are thought to have limited dispersal capabilities, due to their
morphology and/or strong sex-biased philopatry as is observed in other malurids (Cockburn et al., 2003). This is likely to limit
the species’ occurrence to regions where suitable habitat is consistently available and challenge the species’ colonisation of
large areas that become unsuitable regularly (Murphy et al., 2011; Perry et al., 2011; Harrington and Murphy 2016). For that
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reason, an SDM approach that investigates the dynamic nature of suitable habitat may reveal the impact of these processes
better than a static modelling approach. Fire frequency is a measure of fire represented as a static predictor in the only other
Carpentarian Grasswren habitat model (Perry et al., 2011), and it is often the chosen measure of fire in SDM studies (Bradie
and Leung 2017). To explore potential advancements made by our dynamic approach, we compare it to a static approach that
uses fire frequency as a predictor. If an SDM can reasonably model the dynamic availability of Carpentarian Grasswren habitat
with the limited available data, it may help conservation managers better understand the processes that are threatening the
species. As such, this research is relevant to other threatened species that occur in disturbance prone environments.

2. Materials and methods

2.1. Study area and species occurrence data

The study area encompassed the entire historical range of the Carpentarian Grasswren, within which there are four
recognised sub-populations: ‘Buckley River’, ‘Boodjamulla’, ‘Wollogorang’ and ‘Borroloola’ (Harrington and Murphy 2016)
Fig. 1. The four recognised sub populations; Borroloola (BOR), Wollogorang (WOL), Boodjamulla (BDJ) and Buckley River (BRV), are represented with convex hulls
encompassing all known Carpentarian Grasswren records and shown alongside successful and unsuccessful grasswren surveys.
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(Fig. 1). We obtained 143 georeferenced records of Carpentarian Grasswren from the study from a database compiled by a
local conservation organisation that has been conducting regular surveys for Carpentarian Grasswrens throughout their range
during since 2008 (Birdlife Northern Queensland, unpublished data); taking place in July 2008e09 and May 2011, 2013,
2016e2019. Survey effort involved call-playback coupled with observation, as described in Harrington and Murphy (2016),
and successful surveys represent localities where the species responded to call playback or was observed incidentally when
moving within or between sites (Fig. 1). Unsuccessful surveys represent sites at which call-playback failed to confirm the
species presence (n ¼ 1172) (Fig. 2). Only successful survey locations, with duplicates removed (n ¼ 115), were used to
calibrate models as other historical or incidental records were either outside the temporal range of fire data, or they exhibited
high spatial autocorrelation with survey data (Dormann 2007; Crase et al., 2012).

Carpentarian Grasswren exhibit cryptic behaviour and often respond to call playback weakly or not at all. We decided
unsuccessful surveys should not be considered as absences in the context of a Carpentarian Grasswren distribution model
because they are likely to include false negatives. Alternatively, we chose to use MaxEnt because it is a presence-background
approach that does not require absence data, and has performedwell in comparisonwith presence-absence approacheswhen
absence data has high uncertainty (Gibson et al., 2007; Ray et al., 2018).

2.2. Environmental data

Models included up to six spatial predictor variables that previous research has suggested could potentially drive changes
in habitat suitability for the species. Predictor variables represented topography, lithology, and either static or temporally
explicit fire data. Initially, climatic variables were included as predictors. However, at the regional scale of the study, we
expect habitat variables determine habitat suitability. Preliminary models including climatic predictors were noticeably more
overfit to the training data, and the climatic variables generally had low importance in the models with abnormal response
curves. Thus, these variables were excluded from further analyses.

Two topographic variables, Roughness and Distance to Topographic Feature, were chosen to represent the Carpentarian
Grasswren’s preference for topographically complex terrain and proximity to hills (Perry et al., 2011). The topographic
roughness layer was sourced from a GMTED2010 derived topographic dataset designed for ecological modelling, at a reso-
lution of 1 km (Amatulli et al., 2018). To generate the distance to topographic feature layer, ArcMap v10.5 (Environmental
System Research Institute Inc., Redlands, CA, USA) was used to assign cells a value representing the Euclidean distance to the
nearest ‘peak’, ‘ridge’, ‘shoulder’ or ‘spur’ as defined by a 90 m geomorphological landform class layer (Amatulli et al., 2019).
The Euclidean distance layer was then resampled to 1 km pixels and themaximum distance was capped at 5 km to ensure the
distance range was ecologically relevant to the Carpentarian Grasswren’s limited dispersal capability.

To represent lithology and its associationwith Carpentarian Grasswren occurrence (Murphy et al., 2011; Perry et al., 2011)
we used a rasterised version (with 1 km cell size) of the Surface Geology of Australia (1:1,000,000 scale) polygon shapefile
(Raymond et al., 2012). Raster cell values in the lithology layer were integer values referencing the 15 broad lithology groups
found in the study area.We created an additional variable depicting the Euclidean distance to siliciclastic or metasedimentary
siliciclastic lithologies because Carpentarian Grasswren are known to prefer sandstone and metamorphosed sandstone
substrates (Murphy et al., 2011). This distance raster was first generated from a fine scale lithology raster before being
resampled to 1 km and distances capped to 5 km, as above.

We used Northern Australia Fire Information for fire data (NAFI, https://www.firenorth.org.au/nafi3/, accessed 01/03/
2019). Fire scars in NAFI data are mapped monthly and were available from 2000 to 2019. To represent fire as a static
environmental layer we built a layer of the minimum fire frequency within each analysis pixel, using a sub-pixel approach.
Initially, annual fire scars were amalgamated to produce polygons attributed a 19-year fire frequency (2000e2019) before
being rasterised to a fine resolution to preserve polygon boundaries. This raster was then aggregated to 1 km, keeping the
minimum fire frequency (i.e. the number of fires that occurred over the full 19-year period) found within each 1 km pixel. We
included fire scars from 2000 onwards to account for lag effects of fire patterns prior to occurrence data (which began in
2008) and to give a better representation of the long-term fire frequency patterns expected to be important for Carpentarian
Grasswren population persistence. We also trialled variables that depicted the majority fire frequency and the maximum fire
frequency of a pixel, but found that the minimum fire frequency was better at explaining the species presence, likely because
it is more sensitive to the unburned habitat selected by the species.

For our dynamic approach, we aimed to produce independent, time-sliced, spatial predictions of suitable habitat for each
consecutive year from 2008 to 2019. While long term fire frequencies partially determine whether an area is suitable for
Carpentarian Grasswren persistence (Perry et al., 2011; Harrington andMurphy 2016), we hypothesise that time since fire is a
more appropriate measure of fire for making time-sliced predictions because fire frequency does not directly reflect the post-
fire age and thus the structural suitability of spinifex for Carpentarian Grasswrens. Previous research has established that
Carpentarian Grasswrens will not occupy spinifex for at least three years post-fire (Perry et al., 2011; Harrington and Murphy
2016). Therefore, for the inclusion of fire as a dynamic variable, we built a time-sliced fire history layer for each year depicting
the proportion of each pixel that had experienced at least three growing seasons since it was last burnt (i.e. monsoon seasons;
DecembereMarch). These layers depicted the conditions at the time Carpentarian Grasswren surveys were conducted (i.e.
May in each year). After removing duplicates, two of the 115 occurrence records were located in cells that had been
completely burnt over the previous 3 years. However, a fine scale (30 m) Landsat fire history dataset was available for a small
section of the study area that corresponded with these two records. After crosschecking these records using the Landsat fire
4
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scars, we found that the occupied cells did have a proportion of unburnt habitat that was not detected in the NAFI fire scar
dataset. As such these records were not used to calibrate either of the Maxent models presented here and the total number of
occurrences available for calibrationwas n¼ 113. We also constructed predictors for additional age classes (i.e. 4ysb, 6ysb and
8ysb), but found that the proportion of a pixel >3ysb was the best predictor and other similar classes were highly correlated.

Other attributes of fire scars (i.e. size and core area) may influence their suitability for Carpentarian Grasswren occupancy
in the future if large homogenous fire scars challenge their dispersal capabilities. To assess the species relationship with
proximal short-term fire refugium, we constructed another set of time-sliced fire history layers depicting the Euclidean
distance to mature habitat, defined by habitat unburnt for at least six growing seasons, again capping the distance to a
maximum of 5 km. To incorporate a similar distance variable into the static model, we constructed two layers depicting the
Euclidean distance to pixels with a minimum fire frequency of three or less (i.e. burnt three times between 2000 and 2019),
and a minimum fire frequency of zero. However, these variables were excluded from the final static model because they were
strongly correlated and both had a permutation importance less than one when incorporated independently.

Pairwise Pearson correlation coefficients and Variable Inflation Factors were calculated for all variables, with all below the
chosen thresholds of �0.7 and � 10 respectively, demonstrating that all sets of predictors were suitable to include in models
(Dormann et al., 2013; Pradhan 2016).

2.3. Species distribution models

We used maximum entropy species distribution modelling (MaxEnt) (Phillips et al., 2006) to predict Carpentarian
Grasswren habitat suitability. The static model incorporated fire as a single fire frequency layer, while the dynamic model
used temporally explicit fire history layers to produce twelve dynamic time-sliced predictions; one for each year from 2008 to
2019. The static approach matched all occurrences to the single long-term fire frequency layer whereas the dynamic model
matched the occurrence records to the fire history layer unique to their year of collection.

MaxEnt requires background data to contrast the environmental conditions at presences with the environmental con-
ditions found throughout the study area. Additionally, MaxEnt requires the assumption of random sampling (Kramer-Schadt
et al., 2013; Merow et al., 2013) which is violated by spatial and temporal sampling biases inherent to the survey data used
here. More specifically sampling density and extent were higher within and around the Buckley River sub-population, while
northern sub-populations were represented by few occurrences. To refine the modelling process, we chose to account for
sampling bias when generating background data (Fourcade et al., 2014; Vollering et al., 2019; Moua et al., 2020) using a
stratified sampling approach that reflected sampling effort in space and time. This resulted in a background sample that
concentrated around survey locations in proportion to survey location density per sampling period. For each sampling period
(i.e. year) and sub-population, the successful and usuccessful surveys were used to produce a kernel density raster in ArcMap
v10.5 (bandwidth 60 km). Kernel density rasters were then used to inform the sampling probability for background points,
stratified by sampling period. Stratified background samples summed to 10,000, and the number drawn from each time-
sliced layer was proportional to the number of successful and unsuccessful surveys unique to that sampling period and
sub-population.

MaxEnt was implemented in R using the ‘dismo’ package in a ‘samples with data’ format (Hijmans et al., 2017; Team 2019).
MaxEnt uses several different feature classes to fit relationships among the data, with the types of features and a regulari-
zation parameter known as the beta-multiplier specified by the user. We used Akaike Information Criterion corrected for
small sample sizes (AICc) to select the optimal regularization parameter and feature classes because it allows a compromise
between model goodness of fit and over-complexity (Galante et al., 2018). We used the ‘trainMaxent’ function from the
‘enmSdm’ package (Smith 2018) to select themost parsimoniousmodel (fewest feature classes) with the lowest AICc (Morales
et al., 2017). The static model used linear, product, quadratic and hinge features with a regularization multiplier of 2.8. The
dynamic model used linear, quadratic and hinge features with a regularization parameter of 4.7. To assess the relative
contribution of each variable to the model gain, a random k-fold cross-validation procedure with ten replicates was per-
formed in conjunction with a jack-knife test of variable importance (Merow et al., 2013; Shcheglovitova and Anderson 2013).
During k-fold cross-validation, ten folds representing independent subsets of the occurrence data (n¼ 12 test points) were set
aside for testing the model. To discern the relative importance of each variable, the values of each variable were randomly
permuted on the training data before reevaluating the model on the permuted data. The corresponding drop in training AUC,
normalized as a percentage, gives the permutation importance of each variable, which has been found to better reflect
ecological importance than other measures of variable importance (Searcy and Shaffer 2016). To further assess model per-
formance, we conducted a spatial cross-validation procedure, using a checkerboard pattern, where presence-background
data were split into spatially independent training and testing data (Muscarella et al., 2014). The ‘test AUC’ computed from
each cross-validation procedure (averaged for the k-fold cross validation) gave a metric of model performance (Phillips et al.,
2006; Merow et al., 2013).

2.4. Projections of suitable habitat

Models were projected onto stacked environmental layers to produce a predicted continuous surface of the logistic
likelihood score based on the environmental conditions in each cell. The logistic predictions ranged between 0 and 1 and
were interpreted as an indicator of habitat suitability (Pearson 2007; Norris 2014). Continuous surfaces were visualised in
5
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both their natural continuous state, and as binary maps by applying the 10th percentile training presence threshold, meaning
10% of presence locations were predicted to contain unsuitable habitat. For the purpose of this research all cells above the
chosen logistic threshold were considered ‘suitable’, and all below ‘unsuitable’. The static model produced a single continuous
prediction, and a single binary prediction using the threshold (0.326). A time-sliced prediction from the dynamic model was
produced for each year from 2008 to 2019, depicting the habitat suitability at the end of May. To visualise spatio-temporal
habitat dynamics, the continuous time-sliced predictions were converted to binary maps using the logistic threshold
(0.27). The 12 binary maps were summed together to produce a single layer where cells were assigned values ranging from
0 to 12, representing the number of times a given cell was predicted to be suitable between 2008 and 2019. Additionally, the
dynamic time-sliced predictions were visualised separately as binary maps.

To understand how Carpentarian Grasswren occurrence relates to each habitat map, we overlayed sub-population convex
hulls using all known Carpentarian Grasswren records collected after the year 2000. Records prior to the year 2000 were
excluded following current extent of occurrence (EOO) estimates by Harrington and Murphy (2016), who reported declines
from historical sub-population EOO. For the Borroloola sub-population, we had to use pre-2000 records because this sub-
population is thought to have gone extinct prior to 2000. Differences in the temporal continuity of habitat may help
explain why Carpentarian Grasswren have disappeared from historical localities. We compared the availability and isolation
of fire refugia surrounding historical and current sites from Borroloola and Wollogorang sub-populations. For each distinct
patch of refuge habitat (i.e. habitat that was suitable every year between 2008 and 2019) the ‘proximity index’ metric was
calculated using the spatial pattern analysis program FRAGSTATS (McGarigal 1995). Smaller proximity index values corre-
spond with smaller, more isolated habitat patches.

3. Results

3.1. Model evaluation and variable importance

Both static and dynamic models appeared to have good discriminatory ability according to the average test AUC reported
from the k-fold cross validation procedure (0.723 and 0.752 respectively; standard deviation 0.058 and 0.035 respectively)
(Phillips et al., 2006; Merow et al., 2013); and both models showed the same difference between training and test AUC
(�0.031). However, when the datawere split into spatially independent training and testing sets, therewas a larger difference
between training AUC (0.75) and test AUC (0.70) for the static model. Conversely, the dynamicmodel retained its performance
better as therewas a smaller difference between training AUC (0.79) and test AUC (0.76), indicating amore general model that
is less overfit to the training data.

The importance of variables used to represent fire differed considerably between models (Fig. 2). In the static model, fire
frequency had a permutation importance of 18.6%, and was less important compared with distance to siliciclastic lithology
and distance to topographic features (31% and 23.4% respectively). Conversely, fire gained importance in the dynamic model
when incorporated as the proportion of habitat unburnt for at least three growing seasons, contributing more than all other
predictors (35.5%).

3.2. Comparison of static and dynamic model predictions

Both static and dynamic models generally agreed on the distribution of suitable habitat. Nighty four percent of the static
binary prediction (i.e. suitable habitat) corresponded with habitat that became suitable at least once according to the
composite of dynamic binary predictions. However, there were important differences in how each approach depicts suit-
ability based on different temporal fire patterns. The static model predicted 55,944 km2 as suitable according to the binary
prediction (Fig. 3a). This was less extensive than the total area that became suitable at least once during the 12-year period
(95,122 km2), according to a composite of all binary predictions from the dynamic model (Fig. 3b). The dynamic model
predicted a larger area of suitable habitat in some years but less in others; dynamic predictions ranged from 28,806 km2

(2013) to 69,527 km2 (2017). The area and arrangement of suitable habitat reflects fire patterns in the preceding years. For
example, habitat that was relatively extensive and connected in 2011 (Fig. 4a) experienced substantial contraction and
fragmentation because of numerous widespread fires between 2011 and 2013 (Fig. 4b). Following this period of widespread
fires, a decline in habitat availability in both 2012 (�14%) and 2013 (�45%) (% change relative to suitable habitat area in
preceding year), was followed by a relative increase in suitable habitat in 2014 (56%) and 2015 (49%) and has remained
relatively stable since.

3.3. Metapopulation structure

Static and dynamic model outputs revealed the most suitable and consistently suitable habitat closely matches current
sub-population extent of occurrence, reflecting the metapopulation’s fragmented nature (Fig. 5). The static outputs reflect
suitability of long-term fire patterns and thus predict most of the suitable habitat in areas with fire frequencies less than five
(Fig. 2C). Conversely, the nature of the time since fire layers allowed the dynamic model to predict snapshots of suitable
habitat, and identified habitat that reached suitability after three growing seasons, regardless of its long-term suitability.
Single maps produced as the sum of dynamic model predictions, where cell values represent the number of years suitable,
6



Fig. 2. Response curves from the dynamic model (red) and the static model (blue) show how logistic suitability responds to each variable. Shaded intervals
represent the variation in each response over cross-validation replicates. The suitability level of other lithology classes not named in item J is represented by the
dotted line (i.e. average for cross-validation replicates), and was almost identical for the dynamic model (0.413) and the static model (0.41). (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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reflect the consistency of habitat availability from 2008 to 2019 (Fig. 5b). The areas of habitat that have remained suitable
throughout the twelve-year period represent ‘refuge habitat’. Generally, these areas are surrounded by other habitat which
has been suitable for 10e11 years of 12 and we refer to these areas as ‘consistently suitable habitat’. These predictions show
that tracts between the three northern sub-populations do hold suitable habitat when fire is absent, though temporal
continuity is generally low. Habitat consistency is lowest around the Borroloola region; and refuge and consistently suitable
habitat are more limited and isolated. These results support the idea that fire regimes have caused the species disappearance
7



Fig. 3. The binary prediction from the static model (a) identified areas with relatively low fire frequency as suitable. A composite of all dynamic binary predictions
shows where suitable habitat occurred at least once between 2009 and 2019 (b). Each binary map used the 10th percentile training presence threshold to define
suitable and unsuitable habitat. Towns/Localities as per Fig. 1.

Fig. 4. The dynamic model predicted more extensive and connected habitat in 2011 (a) than in 2013 (b). Predictions are of suitable habitat at the end of May,
defined from continuous logistic likelihood surfaces using the 10th percentile training presence threshold. The much reduced and fragmented habitat available in
2013 was the result of widespread fires in the preceding three years. Towns/Localities as per Fig. 1.

H.J. Stoetzel, N.P. Leseberg, S.A. Murphy et al. Global Ecology and Conservation 24 (2020) e01341
from this area (Harrington and Murphy, 2019). The fragmented arrangement of refuge and consistently suitable habitat
corresponds with the fragmented nature of the species’ metapopulation. However, both models failed to explain why there
are no recent observations of the species between the two southern sub-population convex hulls. Despite a substantial
amount of refuge habitat, Carpentarian Grasswren have not been observed in this ‘corridor’ since 2003. However, relatively
8



Fig. 5. The current extent of occurrence (EOO) for extant sub-populations are convex hulls constructed using all Carpentarian Grasswren records collected post 2000; Wollogorang (WOL), Boodjamulla (BDJ) and Buckley
River (BKR) (refer to Fig. 1). The Borroloola (BOR) EOO is constructed using historical records. The static model prediction (a) depicts the logistic likelihood of cells (i.e. suitability). The sum of twelve dynamic model
predictions (b) shows the number of years a cell has been suitable, according to the 10th percentile training presence threshold, and reflects the consistency of habitat availability. Grey polygons enclose areas containing
consistently suitable habitat and refuge that have experienced little to no search effort. Towns/Localities as per Fig. 1.
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few surveys (n ¼ 20) were conducted in suitable habitat between the two major watercourses that isolate this area (Fig. 4b)
and most sites have not been revisited to confirm the species absence. Furthermore, these two major watercourses (i.e.
Gregory River and Lawn Hill Creek) may hinder Carpentarian Grasswren dispersal into the intervening area (Harrington and
Murphy 2016), and as a result the species may occur in this ‘corridor’ at lower densities, especially if the fire history was
unsuitable in the past.

Bothmodels agree that the extent and consistency of suitable habitat proximate to the Boodjamulla andWollogorang sub-
populations is limited, and historical locationswith no recent records reflect low suitability and consistency (e.g. ChinaWall&
Borroloola) (Fig. 5). However, the models did identify areas with low fire frequency and consistent suitability outside current
sub-population EOOs that have experienced little search effort, particularly in the centre of the species’ potential range.
(Fig. 5). Historical sites where the species has not been detected since the 1980s were predicted to contain suitable habitat
(Fig. 3), despite the fact these localities were not represented in the training data (Fig. 1). However, in years following frequent
and widespread fire habitat became severely reduced (i.e. Fig. 4b). Furthermore, refuge habitat around these historical sites
was more limited and isolated in comparison with more recent sites. The average proximity index was low for patches of
refuge habitat within 5 km of historical Wollogorang records (1.27) and Borroloola records (1.98). Patches of refuge within
5 km of current Wollogorang records were less isolated (average proximity index ¼ 5.93). Additionally, only one patch of
refuge had a proximity index >2.6 and this was still more isolated than the five largest patches within 5 km of recent
Wollogorang occurences (proximity index ¼ 8.32e16.19). Furthermore, within 5 km of historical Wollogorang sites, less than
4% of pixels were refuge habitat and 7% remained suitable for 11e12 years between 2008 and 2019. Within 5 km of historical
Borroloola occurrences, 9% of pixels were refuge habitat and 11% remained suitable for 11e12 years. Conversely, at sites where
the species is still persisting in the northern sector of the Wollogorang EOO (Fig. 1), 11% of pixels were refuge, and 22% were
suitable for 11e12 years. Finally, extant EOOs (Fig. 5) contained more habitat that was suitable for 10e12 years (16e45%)
compared with the apparently extinct Borroloola EOO (8%).

4. Discussion

4.1. Comparison of static and dynamic approaches

To better understand the potential habitat (and therefore distribution) of Carpentarian Grasswren, we incorporated the
dynamic nature of fire into MaxEnt species distribution modelling. Accounting for the temporally explicit fire conditions
when occurrence records were collected, by using a dynamic sequence of layers that reflected post-fire age, allowed for better
models that assessed the species relationship with fire. The higher average test AUC of the dynamic model suggest that it
performed well in comparison with the static approach. Moreover, the dynamic model retained its performance when
crosschecked using spatial cross-validation, unlike the static model. Additionally, when incorporating fire in a dynamic
manner, its relative importance in the model increased substantially, becoming the most important predictor.

The relatively low contribution of the fire frequency variable to static models likely results from an inferior explanation of
Carpentarian Grasswren occurrence in comparison with time since fire. These findings support recent circumstantial infer-
ence that Carpentarian Grasswrens depend on relatively long unburnt habitat, and are threatened by unsuitable fire patterns
(Harrington and Murphy 2016). Because the static model incorporates relatively long-term fire patterns, the single static
prediction will better reflect areas where the species is more likely to persist than any single time sliced prediction from the
dynamic model. However, once considered simultaneously, time-sliced predictions have a synergistic effect and the habitat
dynamics they reveal can support ecological inference.

The mechanism driving the disjunct Carpentarian Grasswren distribution is unclear given that apparently suitable habitat
is observed between sub-populations (Harrington and Murphy 2016). While the static model did confirm the fragmented
nature of sub-populations, suggesting that high fire frequency might be the driver, the dynamic predictions revealed more
detail about the mechanism. It showed that habitat availability fluctuates through time, with very limited areas of consis-
tently suitable habitat. We suggest that these areas have been too small for too long to maintain remnant populations and too
isolated too often for recolonisation to have occurred, especially by a species such as the grasswren, with their suspected
limited dispersal capabilities.

In contrast, persistence in the extant sub-populations has been supported by the consistent presence of large areas of
suitable habitat, including the availability of post-fire refugia which existed in spatial configurations more suited to the
species’ dispersal abilities. Assuming the importance of these characteristics for Carpentarian Grasswren occurrence, the
species may have persisted undetected in a substantial amount of habitat to the west of the Boodjamulla EOO and to the
north-east of the Wollogorang EOO. This habitat is within close proximity of habitat with recent records. The presence of fire
refugia and lack of sampling in these areas suggests Carpentarian Grasswren presence may have gone undetected, given the
species is cryptic and the habitat is difficult to access. The static model outputs corroborate this speculation; predicting
suitable habitat in these unsurveyed areas. Additionally, further search effort is required in the habitat corridor between the
Buckley River and Boodjamulla EOOs to confirm the species absence. An ample amount of refuge habitat suggests these sub-
populations are connected. However, it is important to understand whether Carpentarian Grasswrens can colonise this area,
from the north or south; the presence of two major watercourses (and the associated habitats) potentially challenge the
species poor dispersal capabilities. Targeted surveys in refuge habitat and consistently suitable habitat will improve confi-
dence in the species’ presence or absence, and thus, confidence in the species’ true distribution.
10
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4.2. Implications for extinction risk and fire management

Our study has underscored the need to consider the dynamic nature of habitat availability, in this case driven by fire, when
understanding species’ distributions. Our dynamic model shows that large fire events that leave little unburnt refugia are
likely to lead to local extinction, which is reflected in the absence of grasswrens from otherwise suitable habitat between each
sub-population. While Carpentarian Grasswrens can use habitat within 3e4 years post-fire, the presence of long-term fire
refugia in proximity to all sub-populations probably reflects a habitat requirement for population persistence, a theme that
echoes a finding by Murphy et al. (2010). Sub-populations may be centred around long term refugia because these areas
provide the only reliable source for dispersal and re-colonisation at a scale that is biologically relevant to grasswrens.
Recolonisation into areas that have experienced repeated homogenous fires is likely to be very slow for Carpentarian
Grasswrens, given their likely limited dispersal capabilities. Indeed, in the absence of active fire management to maintain
unburnt refugia, we suggest that recolonisation is unlikely to occur.

We also argue that in some areas, recolonisation may be unlikely even if fire management improves because remnant
populations are now so distant. In such cases, recolonisation may well rely on a combination of successful fire management
and active re-introduction. Active fire management with prescribed burning at a regional scale in the cooler months of the
year can increase availability of unburnt refugia during subsequent wildfire events (Legge et al., 2011). For management to
actively protect refugia after widespread fire, dynamic predictions can help identify these priority areas if projection surfaces
are updated as new fire data becomes available. Predicting habitat dynamics in response to fire, and identifying refugia, could
have important implications for designing prescribed fire regimes (Reside et al., 2019). Adapting this research to consider
multiple threatened species may enablemanagement to formulate amore comprehensive approach to prescribed burning for
conservation.

5. Conclusion

We provide a SDM approach that incorporates the dynamic nature of fire through the use of sequential, time sliced, fire
history layers. Both static and dynamic approaches produced models that performed reasonably well, and were able to
identify potentially suitable areas that should be surveyed to confirm the distribution of the Carpentarian Grasswren.
However, incorporating fire into SDM using a dynamic modelling approach demonstrated that there are significant fluctu-
ations in available habitat as a result of fire, and large areas of the species’ potential distribution do not remain suitable
consistently. This results in few refuges over time, and fragmentation of habitat, supporting the idea that inappropriate fire
regimes are driving declines. This important detail is not captured by the static modelling approach that is widely used.
Visualising fluctuations in habitat availability can assist in explaining metapopulation structure, and holds relevance for
conservation management and real time monitoring of species’ extinction risk. Field validation of model outputs will further
assess the relevance of model outputs and improve confidence in the species’ true distribution. While this research supports
the use of dynamic modelling in relation to fire, the technique is potentially applicable tomodelling any habitat that responds
to a range of dynamic processes.
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