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Abstract Research into the suitability of autonomous recording units (ARUs) when surveying for vocal species
is increasing. Simultaneously, there has been extensive research into methods for efficiently extracting signals of
interest from the acoustic data sets that accrue from the deployment of ARUs. For some species, bioacoustic
monitoring supported by computerised signal detection offers the only effective and efficient method for wide-
spread survey. In these circumstances, the detection space of both the ARU and the performance of the signal
detection process must be considered concurrently, but typically, these two elements have been considered sepa-
rately. Here, using the Night Parrot (Pezoporus occidentalis) as a case study, we consider both ARU detection
space and the signal detection process to develop a robust and repeatable survey protocol for the species. After
developing a call recogniser for the Night Parrot, we test its performance on a data set of Night Parrot calls given
at a known distance from an array of ARUs. Having established a relationship between ARU type, recogniser
performance and distance, we determine the sampling radius of an ARU for a given recogniser score cut-off,
and the associated probability of detecting a Night Parrot that calls within that sampling radius. Using these
data, we outline how to develop a robust and repeatable survey protocol for the Night Parrot, with a defined
probability of detection. This protocol could be adapted for other scenarios where deployment of ARUs is neces-
sary to determine a species’ status and distribution.
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INTRODUCTION

Shortfalls in our knowledge of the geographical distri-
bution and abundance of rare and threatened species
prevent targeted and timely conservation action
(Sutherland et al. 2004; Hortal et al. 2015). If the
species is cryptic or difficult to detect, these shortfalls
may be acute (Mace et al. 2008). Developing effec-
tive survey protocols to detect and monitor such spe-
cies should therefore be a research priority. An
effective survey protocol will account for the beha-
viour and ecology of the target species and, equally
importantly, must be robust and repeatable (Suther-
land 2006).

One survey technique increasing in popularity is
bioacoustic monitoring (Shonfield & Bayne 2017;
Teixeira et al. 2019). The availability of commercial
autonomous recording units (ARUs) with long-
lasting power supplies and large memory capacity has
seen bioacoustic monitoring applied widely. ARUs
have proven particularly useful for detecting and
monitoring species previously considered difficult to
detect or assess using conventional survey methods
(see, e.g. Lambert & McDonald 2014; Measey et al.
2017; Williams et al. 2018). There has also been a
corresponding increase in research focussed on how
to extract signals of interest from, often large, acous-
tic data sets (Priyadarshani et al. 2018). Typically,
these two elements of bioacoustic monitoring are
considered separately. If acoustic monitoring is to be
used for systematic survey, protocols with defined
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detection probabilities and sampling areas are neces-
sary (Sugai et al. 2020). This requires an improved
understanding of the parameters defining detection
performance, which include both ARU detection
space and call recogniser performance.
Ultimately, the most important parameter to

resolve is the probability of detection, which is the
product of the probability the species will be detected
if it is available for detection, and the probability it is
available for detection (Pollock et al. 2004). Although
influenced by the chosen method of detection, the
second part of this equation is largely a behavioural
question. If an ARU is set to record in an environ-
ment where the species of interest occurs, this will be
the probability the species will vocalise in the way
necessary for it to be recorded by the ARU. It may
vary in response to multiple factors including risk of
predation, social context and breeding biology
(Teixeira et al. 2019). The first part of the equa-
tion though is a purely technical question; provided
the species does vocalise and the ARU is there to
record it, this is the probability that vocalisation will
be both recorded by the ARU and extracted from the
resulting acoustic data set. Understanding this com-
ponent of the detection equation requires field testing
both the chosen ARU and its associated settings such
as sample rate, gain level and microphone type, and
the method used to extract the signal of interest from
an acoustic data set.
ARU detection space will be driven by technical

factors, such as microphone quality and sensitivity,
and signal processing capability (Turgeon et al.
2017). The signal extraction technique will depend
on the signal of interest. Much research has focussed
on methods for efficiently extracting relevant calling
events from acoustic data sets, including sampling
approaches, visual inspection of spectrograms, acous-
tic indices and the application of signal detection
algorithms, termed ‘call recognisers’ hereafter
(Swiston & Mennill 2009; Towsey et al. 2014; Joshi
et al. 2017; Knight & Bayne 2018). Particularly for
large data sets, call recognisers are an increasingly pop-
ular choice. Call recognisers rely on training an algo-
rithm to detect and evaluate acoustic signals. One of
the most commonly used techniques is template-
matching, whereby potential signals are scored
depending on their similarity to a specific template,
with the user adjusting the score threshold at which a
match is declared (see, e.g. Charif et al. 2010; Katz
et al. 2016). Although the specific algorithm varies, the
process is similar for most recognisers.
When using a call recogniser to extract data from

an acoustic data set, it has been shown that a calling
event’s score is related to the distance that call is
made from the ARU (Knight & Bayne 2018). This is
expected, as calls made closer to the ARU are likely
to have the highest amplitude, exhibit the greatest

signal-to-noise ratio and therefore receive a higher
score from the recogniser. It follows that the score
threshold set to define when a match is declared will
also determine the effective sampling radius of the
ARU. Raising the score threshold increases the score
required for an event to be declared a match, mean-
ing only calls with a higher signal-to-noise ratio, typi-
cally those made closer to the ARU, are likely to be
extracted, reducing the effective sampling radius.
Conversely, lowering the score threshold decreases
the score required for an event to be declared a
match, and calls with a lower signal-to-noise ratio,
such as distant calls, will also be extracted, increasing
the effective sampling radius. Reducing the threshold
in this way does increase the likelihood of false posi-
tive detections and may require manual inspection of
declared matches to ensure the integrity of the data.
Research to date has largely focussed on these sep-

arate elements, either ARU detection space, or call
recogniser performance. Here, using the Night Parrot
(Pezoporus occidentalis) as a case study, we combine
the two elements to determine the probability that a
species will be detected given it is available for detec-
tion, and the sampling radius associated with that
probability. Initially, we compile a data set of Night
Parrot calls at known distances from an array of sev-
eral models of ARU. We then analyse these calls
using a call recogniser, confirming that the relation-
ship between recogniser score and distance can be
described using an exponential decay curve. Using
an extensive database of different call types, we then
test this relationship, confirming it is consistent
across key call types. Finally, we use this relationship
to determine the sampling radius for a range of score
thresholds, and the proportion of calls made within
that sampling radius that will achieve that score
threshold. When combined with the results of
research into the species’ calling behaviour, these
data will support the development of an acoustic sur-
vey protocol with a defined probability of detection
that can be used to systematically assess the Night
Parrot’s distribution.

METHODS

Study species

The Night Parrot formerly occurred throughout central
Australia, before its precipitous decline and virtual disap-
pearance in the late 19th century (Leseberg et al. 2021). In
2013, an extant population of birds was discovered in west-
ern Queensland (Koch 2013), and the bird has since been
detected at several locations in Western Australia (see, e.g.
Jackett et al. 2017; Mills & Collins 2017; Collins 2021).
Research suggests that Night Parrots are relatively seden-
tary (Murphy, Austin, et al. 2017; Murphy, Silcock, et al.
2017). They spend the day roosting as dispersed pairs or
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small groups, in patches of long unburnt Triodia spp., a
genus of grass widespread throughout central Australia.
The birds emerge at dusk and may travel considerable dis-
tances to forage on open grasslands and floodplains
(Murphy, Silcock, et al. 2017). The birds typically return to
their roost sites just before dawn.

Night Parrots are predictably vocal, engaging in a brief
period of calling most evenings before leaving their roost
sites to feed (Murphy, Austin, et al. 2017; Murphy, Silcock,
et al. 2017). Birds occasionally return to their roost sites
and call during the night, particularly when breeding, but
typically return for another brief period of calling just
before dawn. The birds also call occasionally at foraging
and drinking sites, and when moving to and from these
sites (N. Leseberg, S. Murphy, N. Jackett pers. obs.).

Research problem

The Night Parrot’s sedentary habits and predictable calling
behaviour have seen acoustic monitoring prove the most
suitable method for detecting and monitoring the species.
ARUs have been used to monitor presence at known roost
sites, and survey for Night Parrots at prospective roost sites.
However, the detection radius and associated probabilities
of detection associated with these deployments are not well
understood. Furthermore, the large data sets collected
require a call recogniser to extract potential Night Parrot
calls. While statistics around the precision and recall of one
Night Parrot call recogniser have been established (Lese-
berg et al. 2020), how these relate to the detection radius of
the ARUs has not been investigated.

These limitations mean robust conclusions about the
presence or absence of Night Parrots beyond the immediate
vicinity of an ARU are difficult, preventing development of
ARU deployment protocols that could provide a probabilis-
tic assessment of the presence or absence of Night Parrots
at the landscape scale. To solve this problem, we aimed to
determine the probability of detecting a Night Parrot if it
was available for detection within a defined distance of an
ARU, when using a call recogniser to analyse the resulting
sound recordings. To establish these parameters, we (1)
constructed a call recogniser for the Night Parrot; (2)
determined the relationship between score assigned to each
detection by the recogniser and the distance that call was
made from the ARU; (3) determined how that relationship
varied between ARU types; (4) confirmed that relationship
was consistent across call types; and (5) used that relation-
ship to establish the probability of detecting a Night Parrot
if it was available for detection, and the detection radius
associated with that probability.

Recording Night Parrot calls

Adult Night Parrots give a variety of calls, categorised
broadly as ‘whistle’, ‘bell-like’ and ‘croak’ calls (Leseberg
et al. 2019). Whistle and bell-like calls are most useful for
detection as they are the most commonly heard; there are
nine described whistle calls and three described bell-like
calls. Of these twelve call types, four whistle and three bell-

like calls are commonly heard in the study area. The typical
frequency range and duration of these seven call types is
given at Table 1. Within these frequency ranges, individual
calls of each call type are typically constant in frequency,
with a narrow bandwidth of ~100–200 Hz and no modula-
tion.

When recording Night Parrot calls using ARUs, a sam-
pling rate of 24000 Hz is typically used. The upper fre-
quency limit of the Night Parrot’s ‘croak’ call (not relevant
to this research) is ~10000 Hz, so this sampling rate avoids
aliasing in accordance with the Nyquist–Shannon Sampling
Theorem (Landau 1967). In circumstances where long-
term monitoring is occurring, a sampling rate of 16000 Hz
may be used to reduce the amount of memory required for
acoustic data. This sampling rate avoids aliasing for all
whistle and bell-like calls, which are the most important for
detection and are the focus of this research.

Recogniser development

We used the R package ‘monitoR’ (Katz et al. 2016; R
Core Team 2018) to build a call recogniser for the seven
Night Parrot call types most frequently heard in the study
area (Table 1). In a comparison with recognisers using
machine learning methods and commercially available
packages, ‘monitoR’ performed well (Knight et al. 2017)
and is relatively easy to use. Using the technique outlined
in Katz et al. (2016), we constructed a series of binary point
templates for the seven call types. Templates are created by
clipping an example call from a sound file sampled at
24000 Hz then creating a spectrogram (FFT transforma-
tion = Hann window, FFT size = 512, overlap = 0). These
spectrogram parameters provide a good balance between
the frequency and time resolution necessary for viewing
Night Parrot calls, and subsequent processing speed. A
selection of cells within the spectrogram is then classified as
‘on’ or ‘off’. ‘On’ cells are selected to represent the
expected region of highest amplitude for the call in the time
domain, while ‘off’ cells are placed strategically where no
signal is expected.

Table 1. Frequency and duration of specific Night Parrot
call types included in the recogniser. The number of tem-
plates included for each call type is given

Call type
Freq. range

(kHz) Duration (s) Templates

Hollow whistle ~ 1.9–2.1 ~ 0.5–0.6 2
One-note and

two-note trill
~ 2.2 Each note: ~ 0.3 2

Multi-note
whistle

~ 2.1–3.0 ~ 0.4–0.8 7

Toot ~ 1.6–1.8 ~ 0.1 2
Ding-de-ding ~ 2.8–3.8 Each note: ~ 0.1 3
Dink-dink

and dink
~ 2.2–3.5 Each note: ~ 0.1 14

Didit ~ 2.2 ~ 0.2 1
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As the seven call types commonly heard at the study site
are all distinct, templates were created for each specific call
type. To construct a template, a good quality example of
that call type was extracted from field data recorded using
an ARU, and the procedure described above used to create
the template. These templates were then qualitatively tested
on a sample of ARU field data containing examples of the
call type to ensure they detected known variation in the call
type. Some call types are relatively uniform in frequency
and duration (e.g. hollow whistle and ding-de-ding) and
required few templates. Other calls which are less uniform,
particularly in frequency (e.g. multi-note whistle and dink-
dink), required more templates. Additional templates were
created for each call type until qualitative testing on a data
set of ARU field recordings from the study area containing
1850 known Night Parrot whistle and bell-like calls sug-
gested the templates could detect most local variation
across all call types. This process resulted in 31 different
templates (Table 1), which were combined into a template
list (Katz et al. 2016) and represent the final ‘recogniser’.
This recogniser was able to achieve maximum recall of
0.94, with an area under the curve (AUC) of 0.76
(Leseberg et al. 2020).

Analysing acoustic data with the recogniser

Before analysis, each sound file is converted to a spectro-
gram using the same parameters as were used to create the
templates. ‘monitoR’ requires template files and the sound
files that will be scanned to have the same sample rate. As
the templates for this recogniser were created from clips
with a sampling rate of 24000 Hz, any sound files to be
analysed that were not recorded at 24000 Hz were down-
sampled or upsampled to a sampling rate of 24000 Hz
before processing. Qualitative testing confirmed that manip-
ulating files in this way had no apparent effect on results.
No post-processing, such as band-pass filtering of audio
files, occurs before analysis. Each of the 31 templates
within the recogniser is then stepped along that

spectrogram, and for every step, a similarity score is
assigned. The similarity score is the difference between the
mean amplitude detected in the template’s ‘on’ and ‘off’
cells (Katz et al. 2016). Hereafter, we refer to this similarity
score simply as ‘score’. A higher score implies greater simi-
larity between the underlying signal within the sound file
and the template file. When plotted against time, this
results in a series of peaks, with the recogniser returning a
list of these peaks with their associated score. Because the
recogniser scans each file with all 31 templates, this may
result in multiple peaks at times when more than one tem-
plate detects the same call. In this circumstance, the recog-
niser selects the peak with the highest score.

Establishing the acoustic array

Under the inverse square law, the amplitude of the signal
received by an ARU is related to the squared distance of
the source of the call from that ARU. This has been
demonstrated in practice (Yip et al. 2017). Because the
score assigned to a detection by the recogniser is directly
related to the amplitude of that call, we expect that score
will also be correlated with the distance the call is made
from the ARU. To determine the relationship between
score and distance, we established a 675 m long linear
array of ARUs through an area where observations over
several months had established that at least one Night Par-
rot was roosting. This area consisted of patchy Triodia
hummocks on otherwise open ground, with some scattered
shrubs. This is typical of Night Parrot long-term stable
roosting habitat elsewhere (Jackett et al. 2017; Murphy, Sil-
cock, et al. 2017). Three models of popular ARU were
tested: Song Meter 3 (SM3) and Song Meter 4 (SM4)
(Wildlife Acoustics Inc., Concord, Massachusetts, USA),
and Bioacoustic Audio Recorder (BAR) (Frontier Labs,
Brisbane, Queensland, Australia). SM3s were placed at
both end points of the 675 m array centreline and every
75 m along the centreline (Fig. 1). As there were fewer
SM4s and BARs available, they were placed at the end

4

1
1

1
1

75 m
approximate loca�on 
of Night Parrot roost

BAR_N_54BAR_N_50BAR_N_46

SM4_N_16/24SM3_O_24/30SM3_N_24/30

Call Loca�on Example 1 – similar amplitudes registered on SM3s (2) and (3)

Call Loca�on Example 2 – highest amplitude registered on SM3 (5), and 
similar amplitudes registered on SM3s (4) and (6)

1
1

2 3
1

4 5 6 7
1

8
8

9
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Fig. 1. Schematic of ARU
array used for determining the
relationship between recogniser
score and distance. Where
grouped, ARUs were all placed
within 2 m either side of the
array centreline. The code for
ARU type gives ARU model
(BAR/SM3/SM4), microphone
condition (N = New / O =
Old) and gain setting (in dB).
Examples are also given of the
two methods used to establish
approximate locations of calls
within the array.
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point furthest from the known roost, then every 150 m
along the array. At locations where the ARUs were
grouped, all ARUs were within 2 m of the centreline.
ARUs were set with microphones oriented perpendicular to
the array centreline. The technical specifications of each
ARU are given in Table 2.

Research suggests that microphone condition affects
recording quality (Turgeon et al. 2017). To test this, two
sets of SM3s were deployed, one with new microphones
and another with microphones which had spent at least one
year permanently deployed in the field and were in appar-
ently poor condition. Microphones used on the SM4s and
BARs had been previously deployed for approximately six
months and were in good condition.

The gain setting of an ARU determines the input level
being received by the ARU from the microphone(s). When
recording quiet (low amplitude) sounds, gain can be
boosted to increase the input level of those sounds, poten-
tially increasing the ARU’s detection radius. However,
increasing gain to boost the input level of a signal of inter-
est will also boost the level of any background noise, poten-
tially negating the benefit for processes where signal-to-
noise ratio is important, as is the case with template-
matching recognisers. While the default gain settings on
SM3 and SM4, and the manufacturer recommended gain
setting of 46 dB for BAR had been used to make satisfac-
tory field recordings of Night Parrots, we aimed to test
whether an increase in gain improved detection radius.
SM3 and SM4 are capable of recording in stereo, and the
gain for each channel can be set independently. We pro-
grammed one channel on each of the SM3s and SM4s to
record at the default setting (24 dB and 16 dB respec-
tively), while the other was set at a slightly increased gain
(30 dB and 24 dB respectively). BARs have only one
microphone, so three sets of BARs were deployed, with
gain settings of 46 dB, 50 dB and 54 dB. These gain

settings were chosen because testing on Night Parrot calls
made close to the ARU suggested the resulting input levels
noticeably increased the amplitude of individual calls with-
out distortion. It is important to note that these gain set-
tings are not directly comparable, as the detection space of
the ARU and microphone combination depends on other
internal specifications that are unique to each model of
ARU (see Table 2). Ultimately, with combinations of ARU
type, microphone condition and gain setting, we tested nine
‘treatments’ (see Table 2).

Collection of acoustic data and call
identification

SM3s and SM4s recorded from sunset to sunrise. BARs
recorded for 90 mins from sunset and for 120 mins before
dawn, the period when most Night Parrot calling activity
occurs. ARUs recorded at sampling rates of 16000 Hz
(SM3 and SM4) and 48000Hz (BAR). The BAR’s micro-
phones apply an 80 Hz high-pass filter. No filtering was
applied to SM3 and SM4 data. Acoustic data were saved as
16-bit wav files. All ARUs were left in place for seven
nights, recovered and the data downloaded. The recordings
from five nights contained significant wind noise. As wind
is a variable known to influence ARU detection space
(Thomas et al. 2020), we discarded all files from these
nights to avoid introducing additional variation into the
data set. This means our results only apply to recordings
from still nights, a trade-off we were willing to accept.
Sound files from the remaining two still nights were exam-
ined by both listening to and manually scanning spectro-
grams of each file. Many Night Parrot calls were identified,
including some loud calls clearly made close to the array
and simultaneously detected on multiple ARUs, and some
very faint calls that were likely made some distance from

Table 2. Technical parameters of each separate component within the signal processing chain

‘Treatment’

Microphone
Receiver Digitisation Storage

Condition Directivity Sensitivity
Signal to

Noise Ratio
Pre-amp
Gain Gain

Sample Rate
(Hz)/ Bit Depth Format

BAR_N_46 New Omni-directional −28 dB 80 dB 20 dB 46 dB 48 000
16-bit

.wav file

BAR_N_50 New Omni-directional −28 dB 80 dB 20 dB 50 dB 48 000
16-bit

.wav file

BAR_N_54 New Omni-directional −28 dB 80 dB 20 dB 54 dB 48 000
16-bit

.wav file

SM3_N_24 New Omni-directional −11 � 4 dB > 68 dB - 24 dB 16 000
16-bit

.wav file

SM3_N_30 New Omni-directional −11 � 4 dB > 68 dB - 30 dB 16 000
16-bit

.wav file

SM3_O_24 Old Omni-directional −11 � 4 dB > 68 dB - 24 dB 16 000
16-bit

.wav file

SM3_O_30 Old Omni-directional −11 � 4 dB > 68 dB - 30 dB 16 000
16-bit

.wav file

SM4_N_16 New Omni-directional −33 � 4 dB 80 dB 24 dB 16 dB 16 000
16-bit

.wav file

SM4_N_24 New Omni-directional −33 � 4 dB 80 dB 24 dB 24 dB 16 000
16-bit

.wav file
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the array. Of the calls detected, 105 discrete Night Parrot
calls that apparently occurred in close proximity to the
recording array were selected for further analysis.

Determination of call location

It was not possible to determine by observation where, rela-
tive to the array, the bird giving each of the 105 calls
selected for analysis was located; Night Parrots only call at
night when they cannot be seen, and the presence of
humans in and around roost areas at night is restricted and
can affect calling behaviour. Instead, as the amplitude of a
sound wave is known to decay consistently with distance
squared between the source of the sound and the recorder,
we used this principle to try and determine the approximate
point from where each of the 105 selected calls were made.
The data from the sound files recorded by SM3s with new
microphones and default gain setting were examined, and
for each call, the mean amplitude in decibels relative to full
scale (dB FS) for the fundamental frequency in the time
domain was extracted from the original wav file using the
‘Plot Spectrum’ function in audio-editing public domain
software Audacity (version 2.3.0, http://audacity.
sourceforge.net/). The sound files from the SM3s with new
microphones were used because these were more closely
spaced than other ARUs, allowing the relative position of
the calls within the array to be determined more accurately.
A subset of the 105 calls were identified which registered a
similar amplitude (~ −51.0 � 2 dB FS) on one SM3 and
which registered the same or very similar amplitude (�
2 dB FS) on an immediately neighbouring SM3. We
assumed the bird giving these calls did so from the mid-
point on the array between those two SM3s. An example of
this call location is labelled as ‘Call Location Example 1’ in
Fig. 1. Similarly, a subset of calls was identified that regis-
tered an amplitude on a single SM3 similar to the maxi-
mum amplitude across the data set (~ −42.0 � 2 dB FS),
and which also registered very similar amplitudes (but
lower than on the single SM3) on both of the two SM3s in
the array immediately neighbouring the single SM3. These
calls could reasonably be assumed to be given by a bird in
the immediate proximity of that centre SM3. These calls
were assumed to be given at a point 15 m from that SM3,
perpendicular to the array centreline. An example of this
call location is labelled as ‘Call Location Example 2’ in
Fig. 1.

After extracting and examining each of the 105 call
events from the acoustic data recorded by the SM3s with
new microphones, 26 discrete Night Parrot calls were iden-
tified that, using the process mentioned, could reasonably
be assigned to a specific location relative to the array.
Because we assumed that all calls were given either on or
very close to the straight line along which the array was
placed, it is likely that in most cases, the estimated distance
of the calling bird from each ARU in the array is an under-
estimate.

This method of location determination relies on the
decay of the amplitude within the array being consistent;
however, numerous variables can affect this assumption. In
this case, the area where the array was established was an

open stony plain, with only scattered low vegetation, not
expected to impede transmission of Night Parrot calls. We
also assumed that the direction the bird was facing did not
affect the amplitude of the signal being received by the
ARU. Because Night Parrots call at night when they cannot
be seen there is no way to empirically assess this. A final
assumption was that Night Parrots give most of their calls
at a relatively constant volume, meaning the decay of each
call is similar across the array. Qualitatively, this assump-
tion is reasonable, as different calls given at similar dis-
tances are of a similar volume to the human ear
(N. Leseberg pers. obs.). As multiple calls were included in
subsequent modelling, and scores for each call were regis-
tered on multiple ARUs on either side of each call, any
error associated with these final assumptions was incorpo-
rated into the results of subsequent modelling.

Extraction and compilation of distance data set

As BARs use a GPS receiver to update their internal
clock, it was possible to easily determine where on a speci-
fic sound file from any BAR a call detected on another
BAR would occur, and manually identify that call or, in
the event the call was too faint to be detected aurally or
visually from the sound file, the section of the file when
the call would have occurred. Because the internal clock
for SM3 and SM4 is set by the user, and may wander
over time, a combination of characteristics unique to each
call or series of calls, and other ambient sounds, was used
to calculate the equivalent GPS time of each SM3 and
SM4. This enabled the same calls, or at least sections of
recording when those calls would have occurred, to be
manually identified within the sound files of each SM3
and SM4.

Using this process, the specific time at which each of the
26 calls with associated distance data occurred on each
ARU was determined, and a two second section of the
recorded wav file clipped that either contained the call, or
the time when the call would have occurred. Because nine
of these calls occurred outside of the period when the
BARs were recording, only 17 call clips were extracted
from each BAR. All clips were then analysed using the call
recogniser, with the score threshold set to zero. This
ensured that a score was registered for each clip, even clips
from ARUs too distant for the call to be recorded. For
these clips, the score represents the score achieved by ambi-
ent noise within the sound file. The resulting data set is
subsequently referred to as the ‘distance data set’.

Relationship between score and distance

Because score is directly correlated with amplitude, we
expected score to decay consistently with distance in accor-
dance with the inverse square law, provided the atmo-
spheric conditions which influence that decay remain
relatively constant. Ambient noise within the sound file still
receives a score from the recogniser, albeit low, so we mod-
elled this relationship using a non-linear regression function
of the form:
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s ¼ Sa þ ðRa � SaÞ exp �expðlaÞ df g þ ϵ:

where s is the score observed at a distance d from the calling
bird. Sa is the asymptotic value of score (representing the
mean score the recogniser assigns ambient noise), and Ra is
the conceptual initial value at d = 0. la is the decay constant.
The subscript a denotes the specific combination of ARU
model, microphone condition and gain setting. Under this
model, the asymptote Sa was allowed to vary for all ARU
combinations. The model was fitted using the SSasymp
function in statistical software R (R Core Team 2018). To
examine the relationship between score and distance, the
data for each ARU were plotted and the estimated regression
curve added to the plot. Although R2 is not typically a good
indication of fit for non-linear models, because in this case
the null model of a single mean is a sub-model of the non-
linear regression model, we calculated R2 to assess
goodness-of-fit (Schabenberger & Pierce 2002).

Effects of varying gain and microphone
condition

To test whether increasing gain changed the relationship
between score and distance significantly, after fitting the
model to the nine original ARU groups, we condensed
these nine groups into four groups: SM3s with old micro-
phones, SM3s with new microphones, BAR and SM4. We
then fitted the same model to these four groups, before
conducting an analysis of variance for a null hypothesis of
no differences between the original model with nine groups
and the model with four condensed groups.

Similarly, to test whether using new or old microphones
changed the relationship between score and distance signifi-
cantly, we condensed the four original SM3 groups into
two groups representing the different microphone condi-
tions (old and new) and a single group representing all
SM3 data. We then fitted the same model to each of these
three groups, before conducting an analysis of variance for
a null hypothesis of no differences between the model fitted
to the old and new microphone groups and the model fit-
ted to the one group representing the entire SM3 data set.

Relationship between call types

Although Night Parrots have a variety calls, at specific sites,
certain call types often dominate (Leseberg et al. 2019). Two
main call types, multi-note whistle and dink-dink calls, were
detected within the 105 discrete calls detected close to the
array. However, the final selection of 26 calls given at known
locations only contained variations of dink-dink calls, which
are treated similarly by the recogniser’s templates (see
Appendix S1 for spectrograms of these calls). To ensure the
relationship established between score and distance using
the distance data set holds for other call types not contained
within that data set, we compiled a ‘call type data set’ con-
taining a variety of call types and tested whether the relation-
ships within that data set were consistent with the
relationships established in the distance data set.

The call type data set contained 985 Night Parrot calls
collected in field recordings taken at the study site. All calls
were recorded using SM4s with microphones in good

condition, on the default gain settings, and extracted using
the same recogniser. Because the call type data set did not
have associated distance data, we used the amplitude of
each call as a proxy for distance. A relative amplitude for
each call within the call type data set was calculated using
the R package ‘seewave’ (Sueur et al. 2008), by isolating
the call syllable, or the strongest syllable for calls with mul-
tiple syllables, and using the function ‘meanspec’ to extract
the mean relative amplitude of the syllable. Amplitude var-
ies consistently with distance in the same way we have
demonstrated that score does. We aimed to assess whether
the relationship between score and amplitude is similar for
different call types, reasoning that if it is, we can safely
assume the relationship between score and distance for
other call types is similar to that between score and dis-
tance determined for the dink-dink type calls in the distance
data set.

To assess whether the relationships are similar, we
grouped the different call types into three broad categories
of call type: ‘bell-like’, ‘short whistle’ and ‘long whistle’.
Previous research has demonstrated consistent relationships
between score and call type within these groups (Leseberg
et al. 2020). The call type data set contained 406 bell-like
calls, 96 long whistle calls and 483 short whistle calls. We
constructed three linear models to test the relationship
between score, amplitude and call type: a null model where
score was solely a function of amplitude; a model with call
type and amplitude as explanatory variables; and a model
with amplitude nested within call type as the explanatory
variables. We conducted an analysis of variance to compare
these models, selecting the model which explained the most
variation compared to the null model. We then reviewed
the coefficients of the selected model to examine any rela-
tionships and determine whether different call types were
treated similarly by the recogniser.

Establishing a survey protocol

Having characterised the relationship between score and dis-
tance, we used these results to define the parameters of a
survey protocol with a quantified probability that a Night
Parrot call given within a specified distance of an ARU
would be both recorded by the ARU and extracted using the
call recogniser. We achieved this by establishing for a given
cut-off score, c, what distance from an ARU, dc, a Night Par-
rot call can be given that will have a probability p of exceed-
ing that cut-off score, therefore solving the equation:

PrðS> cjdcÞ ¼ p:

where S is the realised score of the call.
To achieve this, we solved for the lower tolerance limit of

the model which described the relationship between score
and distance for the specified recorder type, settings and
microphone condition. Unlike solving for a lower confidence
limit, which would reflect the probability that the mean
score for a given distance will exceed the score cut-off,
when solving for the lower tolerance limit, p reflects the
probability that a call given at that distance will exceed the
score cut-off. Having defined this relationship, we created a
series of tables that specified the effective sampling radius
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for each combination of ARU model, microphone condi-
tion and gain setting, for a defined score cut-off, and prob-
ability that a call given within that sampling radius would
be both recorded and extracted from the data set using the
call recogniser.

RESULTS

Relationship between score and distance

R2 for the model fitted to each combination of ARU
model, microphone condition and gain setting was

0.89, and plots for each ARU combination confirm
the model was a good fit (Fig. 2). The broad rela-
tionship was similar for each ARU model, gain set-
ting and microphone combination, with score
initially decreasing rapidly with increasing distance,
before approaching an asymptote at a recogniser
score of approximately 5. BAR and SM4 combina-
tions outperformed SM3 combinations; for SM3,
calls close to the ARU received lower scores, and
score decayed more quickly than for both SM4 and
BAR. For an SM4 using the default gain setting,
95% of calls that were given within 214 m of the

Fig. 2. Plots of score against distance for each ARU combination, with the model fitted to each separate ARU, microphone
and gain combination. All combinations of BAR and SM4 perform similarly and outperform all combinations of SM3.
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ARU received a score ≥ 10. For a BAR using the
manufacturer recommended gain setting of 46 dB,
this distance was 207 m. For an SM3 using the
default gain setting, this distance was 91 m, meaning
the detection area for the SM3 using these parame-
ters is less than 20% that of the SM4 or BAR.

Differences between gain settings and
microphone condition

After fitting the model to the four ARU groups (by
model and microphone condition), the ANOVA com-
paring these models with the original nine groups
suggested there were significant differences
(F15,1216 = 3.31, P < 0.001). While there are statisti-
cally significant differences in detection space
between gain settings within the groups, plotting the
fitted models for each of the nine groups over the
data for the condensed groups shows that from a
practical point of view, while noticeable for some
groups, these differences are neither substantial nor
consistent (Fig. 3). This suggests that increasing the
gain will not result in any predictable improvement
in detection space. This result is expected for a
recogniser based on template matching; because
monitoR calculates the difference between the mean
amplitudes of the ‘on’ and ‘off’ cells of a template,
increasing gain will also increase the amplitude of the
signal in the ‘off’ cells, negating any benefit of
increasing it for the ‘on’ cells.
Although ANOVA indicates there is no statistically

significant difference in detection space between old
and new microphones (F3,722 = 2.43, P = 0.064),
plotting the fitted models over the pooled data
reveals slight differences (Fig. 4). From a practical
point of view, these differences are small but note-
worthy, suggesting new microphones slightly outper-
form old microphones for score achieved by the
recogniser at a specified distance.

Relationship between different call types

Compared to the null model with score solely a func-
tion of amplitude, the model with amplitude nested
within call type explained more variation than the
model with amplitude and call type as independent
variables (F4,979 = 14.64, P < 0.001). A review of
this model’s coefficients (Table 3) indicates that
intercepts for the short whistle and long whistle calls
at an amplitude of 25 dB (chosen because 25 dB is
the approximate mean relative amplitude of all calls
in the data set) are both slightly greater than for bell-
like calls. Further, the slope for both the short whistle
and long whistle calls is marginally greater than the
slope of bell-like calls. This suggests that both short

and long whistle calls actually receive a higher score
than a bell-like call of the same amplitude. The rela-
tionship appears consistent across the specific call
types within each broad group (Fig. 5). These results
confirm that short and long whistle calls exhibit the
same relationship between score and distance as bell-
like calls, meaning these results can be used to define
a survey protocol that will be applicable across call
types.

Establishing a survey protocol

Solving the equation defining the probability that a
call given within a specified distance will achieve a
score greater than the cut-off produces Table 4. This
indicates the effective sampling radius for an SM4
using new microphones and the default gain setting.
Results for all other ARU, microphone and gain
combinations are included at Appendix S2.

DISCUSSION

If ARUs combined with automated signal detection
will be the primary means of surveying for a species,
it is critical that the influence of both elements of the
probability of detection are understood. To date,
most research in this field has focussed on the capa-
bilities of ARUs as a substitute for other survey
methods (see, e.g. Digby et al. 2013; Lambert &
McDonald 2014; Williams et al. 2018), the perfor-
mance of different signal extraction techniques (see,
e.g. Swiston & Mennill 2009; Joshi et al. 2017;
Venier et al. 2017) and the relative performance of
various automated recognition algorithms for extract-
ing the resulting acoustic data (see, e.g. Dema et al.
2017; Knight et al. 2017; Priyadarshani et al. 2020).
The method outlined here demonstrates how both
ARU detection space and call recogniser perfor-
mance must be assessed concurrently to define a
robust and repeatable survey protocol for species like
the Night Parrot, where the deployment of ARUs fol-
lowed by analysis using call recognisers offers the
only feasible option for widespread survey.
Our pattern of results was largely expected, with

score decaying exponentially and predictably with
increasing distance from the ARU for all combina-
tions of ARU type, microphone and gain setting. As
this research focussed on maximising the area that
could be surveyed, ARU spacing was established to
better understand the outer limits of the detection
space. ARUs were too widely spaced to get a detailed
understanding of the relationship between score and
distance very close to the ARU (i.e. within ~ 40 m).
For another species, or application where precisely
understanding detection performance close to the
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ARU is important, the spacing of ARUs should be
considered closely.
Calls made at the same distance from an ARU and

extracted using the recogniser achieve a higher score
when recorded by SM4 and BAR than when
recorded using SM3, and the rate of decay was less
for SM4 and BAR than for SM3. This saw both
SM4 and BAR achieve a much larger detection space
than SM3. These differences are expected given the
SM4 and BAR are later generation ARUs than SM3,

with improved specifications such as inclusion of a
pre-amplifier and better signal-to-noise ratio. Chang-
ing gain settings had no practical impact on the
results that were achieved by each ARU type, with
differences in detection space neither substantial nor
consistent. This is probably an artefact of the
template-matching algorithm used to build the recog-
niser, and the spacing of ARUs. As mentioned,
ARUs were too widely spaced to really understand
the relationship between score and distance close to

Fig. 3. Plots of score against distance for different gain settings within the four broad combinations of ARU model and
microphone condition. Only a portion of the x- and y-axes are shown, to highlight the sections of the plot where differences
are most obvious. The inconsistency can be seen; for BAR_N, the highest gain setting slightly outperforms the others, whereas
for SM4_N, the highest gain setting performs more poorly than the lower setting.
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the ARU, where changes in gain are perhaps more
likely to have an impact. As expected, the detection
space of the SM3 using old microphones in appar-
ently poor condition was smaller than for an SM3
with new microphones, although this difference was
not statistically significant.

Probability of detecting Night Parrots

The overall probability of detection is the product of
the probability the species will be detected if it is

Fig. 4. Plot of the model fitted to the entire SM3 data
set, and models fitted to only old and new microphone data
sets. Machines with new microphones slightly outperform
machines with new microphones. Only a portion of the
x- and y-axes are shown, to highlight the sections of the
plot where differences are most obvious.

Table 3. Estimates of the intercept (at a relative ampli-
tude of 25 dB) and slope coefficients for the model incor-
porating call type and amplitude nested within call type. Of
particular note are the higher intercept and slope coeffi-
cients for the ‘long whistle’ and ‘short whistle’ calls

Effect Estimate SE t value Pr(>|t|)

call ‘bell-like’
(at 25 dB)

20.204 0.207 97.745 0

call ‘long whistle’
(at 25 dB)

22.181 0.427 51.993 0

call ‘short whistle’
(at 25 dB)

22.239 0.189 117.674 0

call ‘bell-like’ : amp 0.859 0.019 44.635 0
call ‘long

whistle’ : amp
0.869 0.037 23.446 0

call ‘short
whistle’ : amp

0.896 0.022 40.663 0

Fig. 5. Plots showing the relationship between score and
relative amplitude for each call type group. Relationships
are similar across groups, with specific call types also dis-
playing similar relationships within the groups.
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available for detection, and the probability it is avail-
able for detection. Our modelling has solved the first
part of this equation, allowing the definition of a sam-
pling radius for a specified call recogniser score
threshold, and the associated probability of detecting a
Night Parrot call, if one calls within that sampling
radius. The second part of this equation is a beha-
vioural question and, in the case of the Night Parrot,
relates to how likely the species is to call. Research
suggests that calling activity in and around long-term
stable roost sites is very predictable (Murphy, Austin,
et al. 2017), and the probability of calls being given
during any dusk or dawn calling period is high. If the
sampling period encompasses several dusk and dawn
calling periods, this probability is close to one
(S. Murphy, N. Leseberg unpub. data). The data pre-
sented here suggest that robust conclusions about the
presence or absence of Night Parrots at prospective
long-term stable roost sites are possible using an array
of appropriately spaced ARUs deployed for short peri-
ods. Understanding the probability of detection away
from long-term stable roost sites will require further
research into the calling behaviour of Night Parrots
when moving within the wider landscape.

Importance of other recogniser performance
parameters

Recogniser performance is typically assessed using
two parameters: precision and recall. For a specified

score threshold, precision is the proportion of detec-
tions returned by a call recogniser that represent
actual calls (true positive calls), while recall is the
proportion of true positive calls detected by the
recogniser that were available for detection within the
data set. For all recognisers, there is a trade-off
between recall and precision. Setting a high score
threshold increases a recogniser’s precision, meaning
a higher proportion of detections will represent true
positives. However, this increases the likelihood of
false negatives, actual target signals that do not meet
the score threshold, and are not detected, for exam-
ple quiet or distant calls. This reduces the recog-
niser’s recall, or the proportion of all target signals
identified within a data set. Conversely, reducing the
score threshold returns more low-scoring target sig-
nals as matches, but simultaneously returns more
low-scoring non-target signals, or false positives. This
increases the recogniser’s recall, but also increases
the proportion of non-target signals in the resulting
data set, thereby decreasing precision.
This research has linked sampling radius to recall

for a specified score threshold. Recall is equivalent to
the probability that a call will be detected if it is
available for detection, the first of the two compo-
nents of the probability of detection equation outlined
earlier. The recogniser’s precision will also be
affected by changes to the score threshold, but this
will not affect the probability of detection. Instead,
this will manifest itself in the labour required to man-
ually proof detections returned by the recogniser.

Table 4. Results of solving the equation for detection probability and distance given a specified score cut-off using the SM4
with microphones in good condition and the default gain setting applied (SM4_N_16). For example, if applying a score cut-
off of 15, 95% of calls given within 138 m of the ARU will be extracted from the acoustic data set by the recogniser. Alterna-
tively, the probability that a Night Parrot call given within 138 m of the ARU will score ≥ 15 is 95%
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Raising the score threshold will reduce the sampling
radius for a specific recall, but will increase the preci-
sion of the recogniser, meaning fewer false positives
will be returned, requiring less manual proofing of
detections. Conversely, reducing the score threshold
to increase the sampling radius for a specific recall
will decrease the precision of the recogniser, meaning
more false positives will be returned, requiring more
manual proofing of detections.

Potential limitations of this research

Our approach relies on several assumptions that are
reasonable for this study, but should be reviewed if
applying the method more widely. This study used
data that were collected from only a few specific sites
within an area of only several thousand hectares.
Given the similarity between these sites, factors
which may affect the models in different circum-
stances, such as sound transmission and background
noise levels, did not vary. It is likely that most Night
Parrots will be found in similar habitats and acoustic
landscapes. However, when applying the method out-
lined here to surveys elsewhere, or to another species
that may occur in a different acoustic landscape, the
influence of these factors should be considered.
In this study, all calls that were incorporated into

the distance data set were detected by the recogniser.
In practice, this is unrealistic and probably reflects
the relatively small number of calls in the data set.
All recognisers will have a false negative rate; a selec-
tion of calls within the data set that for some reason
will not be detected by the recogniser. While care
should be taken to minimise this during recogniser
development and testing, under some circumstances
an increased false negative rate may be unavoidable.
This may occur, for example, at a site where call
types differ from those used to train the recogniser.
Quantifying this effect without a comprehensive test
data set is difficult. Ultimately, care should be taken
to ensure recogniser performance is understood
before applying the methods outlined here in unfa-
miliar circumstances.
The approach used here is uniquely suited to call

recognisers based upon a template-matching algo-
rithm such as ‘monitoR’; because a call’s amplitude
is a key component in calculating that call’s score,
the established relationship between amplitude and
distance is transferable to score. A similar relation-
ship exists between distance and detection probability
for acoustic data generally and also for some other
recognisers (Knight & Bayne 2018). While it is likely
this relationship exists for most recogniser types, the
strength of the relationship may not be universal. If
this method is applied using another recogniser algo-
rithm, testing will be necessary to determine whether

the relationship between recogniser detection score
threshold and distance is strong enough to support
similar conclusions.
Our method for estimating the distance of calling

birds from the ARUs within the array using the rela-
tive amplitudes of calls was necessarily imprecise and
reflects the unique challenge presented by the Night
Parrot. It is nocturnal, extremely cryptic, very rarely
seen even by researchers focussed on the species
(N. Leseberg, S. Murphy, 2021, pers. obs.), and there
is no captive population. Because so few populations
are known, ethical considerations preclude unneces-
sary disturbance at long-term stable roost sites. Given
these considerations, the approach applied here was
imperfect, but necessary. It is important to note we
were more likely to under- than overestimate the
distance of a calling bird from the ARU, meaning our
calculated sampling radii are also likely to be underes-
timates and therefore conservative.
For other species where research is less con-

strained, more accurate methods of distance assess-
ment should be considered. Such methods could
include establishing the precise position of the bird
within the array via observation or radio tagging,
using a sound pressure meter while observing a call-
ing bird to determine the mean amplitude of a call
given at a specific distance, or using multiple ARUs
with accurate synchronised clocks to triangulate an
animal’s position within an array. These results could
be used to replicate a calling bird using playback at
the appropriate volume within an array, building a
more comprehensive test data set. These techniques
have been used in other studies seeking to simulate
birds calling at a specific distance (see, e.g. Digby
et al. 2013; Turgeon et al. 2017).
We did not quantitatively assess the calibration of

the microphones used in this study. While new
microphones were assumed to operate within the tol-
erances specified by the manufacturer, the strength of
our conclusions around the performance of the
microphones in poor condition is limited. Declining
microphone sensitivity over repeated field deploy-
ments has been demonstrated (Turgeon et al. 2017).
However, in our experience, the majority of Night
Parrot surveys will be performed by consultants,
Indigenous ranger groups and conservation managers
unlikely to have the time or expertise to repeatedly
test and calibrate ARU microphones. In these cir-
cumstances, observing the condition of the micro-
phones, while being aware of the amount of time
they have already spent deployed in the field, repre-
sents a method to rapidly assess their suitability,
hence our use of microphone condition associated
with deployment time as a treatment within the
study. Ultimately, our results confirm those of other
studies that microphone performance will decline
over time, and although microphones in apparently
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poor condition may still perform adequately, this
should be a trigger to confirm microphone perfor-
mance through calibration and testing.

How to develop a specific survey protocol?

Applying the results of this research requires consid-
eration of both the target species, a survey’s objec-
tives, and the resources available, including funding,
and time for both fieldwork and subsequent analysis.
As ARUs could be used to survey a range of species,
with an enormous variety of vocalisations, the num-
ber and spacing of ARUs necessary to collect the ini-
tial distance data set will be species and vocalisation
specific. For example, spatially accurate surveys of
small anurans will require a tighter spacing than gen-
eral presence or absence surveys of a bird or mam-
mal with a louder or lower frequency vocalisation.
These requirements should be considered before
designing then testing the initial survey array. Our
results establish a significant difference in detection
space between different ARU types, which affects the
area able to be surveyed, and must be understood.
For a small survey, this may be less relevant. For
large-scale surveys involving significant investment in
field and analysis time, the improved detection space
of higher quality ARUs is likely to offset the addi-
tional cost. Similarly, our results suggest new micro-
phones outperform older microphones. This
difference in detection space will increase over time
as microphones are subject to additional exposure
through the wear and tear of repeated deployments
and long periods in the field. Again, the benefit of
ensuring consistent performance through regular test-
ing and, if necessary, replacement of microphones
will probably offset the cost of reduced or unpre-
dictable performance. Our research did not find that
increasing the gain improved detection space, which
could be specific to the scenario and detection algo-
rithm we used. While this may be the case generally,
we acknowledge there could be circumstances where
adjusting gain is beneficial.
When deciding on score thresholds, the precision-

recall trade-off discussed earlier must be considered.
Prioritising a high probability of detection while look-
ing to maximise the sampling radius will see a lower
score threshold applied, effectively prioritising recall,
but reducing precision and therefore necessitating
substantial time spent manually proofing detections.
Raising the score threshold to improve precision will
reduce the number of false positives returned and
therefore the amount of manual proofing necessary,
but will also reduce the effective sampling radius,
requiring more resources to sample the same area.
Ultimately, the acceptable sampling radius will be
determined by factors such as the importance of

extracting all calls from the data set, the area to be
sampled and the resources available, including
ARUs, field time and analysis time. These should be
considered when developing a survey protocol for a
specific site. Appendix S3 gives a worked example of
how to do this.
The process outlined here generated the data nec-

essary to develop a robust and repeatable survey pro-
tocol for the Night Parrot, accounting for both ARU
detection space and call recogniser performance, two
parameters that have typically been considered sepa-
rately. For species such as the Night Parrot, whose
distribution is poorly known, but for which acoustic
monitoring will be the only feasible method of sur-
vey, the development of such protocols is critical.
Although the rarity and conservation status of the
Night Parrot limited our options for collecting some
of the required data, the overall process for calculat-
ing the required parameters was sound and could be
easily improved and applied to other similar species.
This process will be of particular use to researchers
and field ecologists employing bioacoustic monitoring
to better understand the distribution of a species.
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the distance dataset.
Appendix S2. Detection radius tables for all combi-
nations of ARU model, microphone condition, and
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Appendix S3. A worked example of how to apply
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