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ABSTRACT 

Context. Night parrots (Pezoporus occidentalis) are one of Australia’s most endangered birds, and 
there is evidence suggesting feral cats (Felis catus) are a major cause of decline. However, because 
night parrots currently have a restricted distribution, little is known of the ecology of feral cats 
around their remaining populations. This limits the development of effective management 
strategies. Aims. The aims of this study were to understand feral cat movement and habitat 
selection around night parrots, and to then estimate the effectiveness of possible management 
actions. Methods. Research was conducted around the only confirmed night parrot population 
in eastern Australia. In 2019 and 2020, we obtained GPS data from nine feral cats, and used step 
selection functions to assess preferred habitats. Management options were then simulated based 
on cat movement data, including altering trap numbers and layout, and changing routes for night 
spotlight shooting (using existing roads, random walking or creating new roads in preferred 
habitats). Key results. Feral cats preferred alluvial and riparian habitats and avoided rocky 
woodlands and roads. Simulated control efforts were more successful if traps are placed at 
‘pinch points’ where drainage lines converged, and if new roads were created near to creek 
lines and alluvial habitats. Conclusions. Feral cats move around the last known population of 
night parrots in eastern Australia, travelling through and using many shared habitats. Targeting 
creek lines and alluvial areas in cat control operations would improve effectiveness and 
potentially reduce predation impacts on night parrots. Implications. Conservation of 
endangered birds like night parrots can be enhanced through understanding the ecology of 
threats such as feral cats to develop locally tailored control operations. 

Keywords: adaptive management, applied ecology, endangered species, feral cats, invasive species, 
night parrots, simulation models, wildlife tracking. 

Introduction 

Feral predators such as the cat (Felis catus) are a significant threat to biodiversity, and can 
annually kill a remarkable number of birds (Woinarski et al. 2017a). Ground-nesting 
species are particularly at risk, and night parrots (Pezoporus occidentalis) have life 
history traits that may make them especially vulnerable (Woinarski et al. 2017b). First, 
they nest and forage on the ground (Jackett et al. 2017; Murphy et al. 2017a, 2017b), 
and at certain times need to drink at places frequented by cats (Kearney et al. 2016; this 
study). Night parrots also lack some of the adaptations typically associated with visual 
acuity in nocturnal birds (Iwaniuk et al. 2020). Second, there is direct evidence of 
predation such as historical reports of domestic cats bringing home numerous night 
parrot body parts in the 1800s (Ashby 1924), and more recent observations of cats 
frequenting night parrot nesting areas when nestlings become vocal just prior to 
fledging (N. Leseberg, unpubl. data). This suggests that management of feral cats where 
night parrots occur is a critical conservation action. 

Feral cats are notoriously difficult to control, especially when at low densities. Lethal 
control is a typical approach, but there are potential unintended consequences that may 
counteract the management intent, such as increased immigration of feral cats (Doherty 
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and Ritchie 2017). Approaches such as baiting can be 
ineffective in many circumstances (Fancourt et al. 2021), 
and may be undesirable if impacts on dingoes (Canis lupus 
dingo, which are thought to sometimes regulate cats, 
Kennedy et al. 2012) cannot be mitigated. Shooting and 
trapping are expensive exercises (Ruykys and Carter 2019), 
largely because they involve intensive input from experi-
enced personnel and can normally be only undertaken in 
short sessions in remote settings. Recently developed poison 
delivery systems that exploit cat grooming behaviour show 
some promise (Moseby et al. 2020); however, they rely on 
installation along predictable pathways where target predators 
move, such as watercourses, which can frequently be inundated. 
For the foreseeable future, cat control must rely largely on 
refining existing control techniques, both direct and indirect, 
via habitat management (Ruykys and Carter 2019). This 
means developing integrated strategies that use multiple 
control methods, sensitive land management that improves 
the quality of the resources available for the potentially 
affected species, and most significantly, gaining a better 
understanding of cat movements and behaviour to target 
control programs more cost-effectively (Comer et al. 2020). 

Recent surveys of night parrots in Queensland and 
Western Australia suggest remnant populations are small. 
In Queensland’s case, where most research and monitoring 
has taken place to date, the night parrot population size 
is likely to be around 20 individuals (N. Leseberg and 
S. Murphy, unpubl. data). Being small, these populations 
are especially vulnerable to cat predation, even if cats 
themselves occur at a low density, which appears to be the 
case in Queensland (Murphy et al. 2018; Kearney et al. 2022). 
Indeed, Moseby et al. (2015)  and Greenwell et al. (2019)  

showed that even individual cats can impart a devastating 
impact on small populations of native animals. As such, cat 
control is one of the primary conservation land management 
actions for threatened species, despite the potential costs. 

Feral cat control needs to navigate a pathway through 
effort, cost-effectiveness, innovation, and perverse outcomes 
(Joseph et al. 2009), especially when the risk of extinction 
for the species to be protected is very real (Murphy et al. 
2018). Therefore, planning careful strategies, rather than 
simply instigating control for its own sake, is exceptionally 
important. In this study, we had two objectives. First, we 
aimed to understand the movement patterns and habitat 
selection of feral cats in a landscape in which night parrots 
occur. Specifically, we investigated via GPS tracking, cat 
movement patterns, transit routes and habitat preferences. 
In addition, we used a subset of GPS tracking data to 
simulate the effectiveness of different control scenarios and 
therefore to predict potential effectiveness of various cat 
control techniques (i.e. shooting, trapping, and baiting, or 
some combination of each). 

Materials and methods 

Study site 

This study was undertaken on Pullen Pullen Special Wildlife 
Reserve and neighbouring Mount Windsor and Brighton 
Downs cattle stations in south-western Queensland (23.3°S 
141.6°E) (Fig. 1). The area is hot and arid, with approximate 
mean maximum temperatures of 39°C in January and 23°C in  
July. Annual rainfall is highly unpredictable, with dry periods 

Fig. 1. The location of the study area and nearby protected areas in south-western Queensland. 
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punctuated by occasional wet years. Median annual rainfall at 
Brighton Downs is 240 mm, and 65% of the rainfall occurs 
between December and March (
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Bureau of Meteorology 2017). 
The vegetation is typical of the Channel Country: largely 
treeless, and comprising tussock and hummock grasslands, 
gibber rises, floodplains with claypans and sparse annual 
plant cover, very open woodland escarpments, and ephemeral 
drainage lines fringed by Acacia species, and Coolabah 
(Eucalyptus coolabah). Habitats are described in detail in 
Murphy et al. (2017b). 

Trapping and handling 

Cats were captured using a combination of soft-jawed 
foothold traps (size 1.5 Oneida Victor Soft Catch, Ohio, 
USA, and size 1.5 Bridger, Minnesota, USA) or cages 
(30 cm × 30 cm × 60 cm) baited with cat urine and/or 
faeces. Visual lures, consisting of feathers and/or foil, were 
installed near traps to attract attention. The traps were 
checked every morning. Caught cats were removed from 
traps and restrained inside canvas holding bags by tying 
together their forelegs and hind legs (separately) with plastic 
cable ties. This avoided the need for sedatives and ensured 
cats were released in an alert state. GPS trackers were fitted 
while the cats were restrained and sex, weight, coat colour 
and basic morphometrics recorded before release at capture 
site. Handling typically took less than 10 min. 

Tracking 

Two types of GPS devices were used, and both allowed 
data retrieval via satellite. First, we used SPOT Trace™ 
units (Garmin, Olathe, Kansas, USA), which were glued 
using two-part epoxy to a leather or synthetic harness. The 
harnesses had neck and chest straps, which were glued and 
bolted together for fitting and were designed so that the 
unit sat between the shoulder blades facing skywards. The 
units weighed approximately 100 g, including the AAA 
batteries and harness material. The main advantage of the 
SPOT™ units was their low cost, at roughly 10% of 
the second type of unit we used, which were Iridium 

Litetrack-130s (Lotek, Havelock North, New Zealand). 
These were fitted to the cat using a single neck collar and 
weighed approximately 130 g. Iridium units recorded data 
at 1-h intervals and SPOT trace units recorded data at 
5-min intervals. However, for this study we used 1-h interval 
data from SPOT trace units to ensure comparability with the 
Iridium data, and that all movement data were consistent. 

Habitat selection 

All simulations, spatial manipulations and modelling 
were undertaken in R ver. 4.1.2 (R Core Team 2020). To 
measure feral cat habitat selection, we applied step selection 
functions (Thurfjell et al. 2014) with the R library amt (Signer 
et al. 2019). This was used instead of home-range wide 
resource selection functions because at least two of the cats 
captured did not appear to be restricted to a core home 
range. We limited our analysis to steps of between 1 and 
3 h apart. For each step, five random steps were generated 
based on the probability distributions of turn angles and 
distance between fixes for each individual cat (gamma and 
von mises distributions respectively). Models included 
habitat variables based on Queensland’s state-wide regional 
ecosystem mapping (Queensland Herbarium 2021). To 
reduce the dimensionality of our analyses, we used local 
knowledge to aggregate these descriptions from 26 down to 
nine habitat types. For example, ‘Sparse herbland, open 
water or bare areas on flood plain lakes and interdune clay 
pans and lakes’ and ‘Variable sparse to open herbland on 
frequently flooded alluvial plains’ were aggregated to 
‘Sparse grasslands’. The full list of the habitat types used in 
our analyses is presented in Table 1, and the aggregations 
from the regional ecosystem mapping is shown in Appendix 
1 (see Supplementary material). We included vegetation 
with an interaction term with the GPS location time of day 
(i.e. night, being 1800−0600 hours, or day), and whether 
locations were within 25 m of a road. Then, multiple 
conditional logistic regression models with different habitat 
variables were compared within an Information Theory 
framework (Burnham and Anderson 1998) using Akaike 

Table 1. Description of the regional ecosystem (vegetation) types used in the analysis. 

Habitat Broad description 

Gibber Gibber flats, with very scant grass cover (<1%). Amalgamated with claypans in analysis because both characterised by scant vegetation. 

Flats–sparse Flat grasslands (not alluvial). No shrub/tree cover. Scattered grass rarely exceeding 20% cover, dominated by Astrebla spp. 

Flats–medium Flat grasslands (not alluvial). No shrub/tree cover. Typically, greater than 20% ground cover. Grass dominated by Astrebla spp. 

Spinifex Dense spinifex (Triodia spp.) grasslands. Favoured roosting habitat for night parrots 

Rocky woodland Woodlands with rocky ground, dominated by Acacia sibirica and Eucalyptus normantonensis. Rocks rarely exceed 1 m height. 

Escarpment Rocky escarpment, dominated by various Acacia species (A. shirleyi, A. aneura, A. catenulata), Eucalyptus thozetiana, and scattered Triodia spp. 

Alluvial–medium Alluvial floodplains of medium shrub/tree cover, dominated by Acacia cambagei, E. coolabah, Senna artemisioides and Eremophila spp. 

Alluvial–dense Dense alluvial floodplains, with E. coolabah and chenopod shrublands 

Riparian Riparian ecosystems, with tree cover dominated by Eucalyptus calamadulensis and E. coolabah. Typically has a dense shrub understorey 
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Information Criterion values corrected for small sample size 
(AICc). A null model was also included. In each conditional 
logistic model, steps were considered strata and each 
individual cat considered as a cluster. In the models that 
considered vegetation as categorical, the gibber habitats 
(those with scant vegetation) were considered as the 
intercept, against which the odds of selection of other 
variables were measured. 

Trapping simulations 

We examined the effect of trap number, deployment duration 
and site (random vs non-random) on the probability of trap set 
encounter given the GPS movements of cats. We treated cage 
traps, foot-hold traps and Felixer (Thylation, Adelaide, 
Australia) grooming traps together. Cats in largely treeless 
arid areas are known to move mostly along drainage 
lines (Moseby et al. 2009), and this is the case in the study 
area, as identified by camera trapping data (S. Murphy, 
H. McGregor and A. Kutt, unpubl. data). As such, our 
simulations only placed sets along drainage lines, placed 
both randomly and manually. For random set placement, a 
large sample of drainage lines (~550 km) was first 
manually mapped within the convex hulls (the smallest 
convex polygons that contain all of the points) for each cat 
based on high resolution satellite imagery (30-cm and 
60-cm resolution; ESRI 2019). From 1 to 50 traps were then 
placed randomly along these mapped lines (for each cat) 
using the st.sample function in R (Pebesma et al. 2018). 
Random trap set simulations were run 100 times. For manual 
set placement, one author with experience setting cat traps 
(SM) chose five sites within the convex hull of each cat. 
This was done ‘blind’, i.e. without referring to the GPS 
tracking data. The sites were placed at the point where 
multiple parallel braided drainage channels coalesced to 
drainage ‘pinch points’ because these were suspected to be 
places experiencing a high level of cat activity. 

To calculate cat movements and how these interacted with 
the simulated trap placements, we created a habitat utilisation 
surface for each cat on each day with 30-m resolution, using 
the function brownian.bridge.dyn (Kranstauber et al. 2012). 
Utilisation probabilities for each day were scaled from 0 to 
1, and we used these values as a proxy for trap encounter 
probability. Daily encounter probabilities were extracted 
for each trap using the function raster::extract (Hijmans 
2019), with the maximum probability value returned with 
a 30-m buffer around each trap. Probability values greater 
than 0.01 were accepted as instances where cats were likely 
to have encountered traps. Despite being quite low, visual 
inspection of rasters showed that this value captured the 
most likely trajectories between GPS fixes. The primary 
variable of interest was the time it took a cat to first 
encounter a trap under each scenario, which incorporated 
1– 50 randomly placed traps, and five manually placed traps. 

Spotlighting simulations 

To examine the effectiveness of spotlighting and shooting, 
and how this could be improved as a management tool, 
we examined the number of cat detections over a series 
of simulated spotlighting ‘patrols’, based on the cat GPS 
tracking data from four cats, which overlapped in time and 
space. We used the location, time, and frequency of patrols, 
as the simulation variables, because these are the factors 
that land managers have most control over and are the 
costliest. 

For location, we compared detection rates for six different 
classes of patrol track: (1) fixed patrol along an existing 
52.6 km station road, at approximately 13 km/h (‘car along 
existing’); (2) fixed patrol along a 53.0 km hypothetical 
road (also at 13 km/h), aligned parallel to watercourses 
(‘car along new’, see below for justification); (3) cross 
country driving patrol starting from a random point along 
the existing track (‘car from existing’); (4) cross country 
driving patrol starting from a random point along the new 
track (‘car from new’); (5) cross country walking patrol, at 
2–3 km/h, starting from a random point along the existing 
track (‘walk from existing’); and (6) cross country walking, 
also at 2–3 km/h, patrol starting from a random point 
along the new track (‘walk from new’). A hypothetical new 
track parallel to watercourses was needed because existing 
vehicle tracks in this landscape tend to be non-randomly 
placed perpendicular to watercourses and at higher 
elevations. 

The random tracks were generated using the function 
rTrack (Pebesma et al. 2021), and were each constrained by 
the number of points (2800) and time step arguments (5 s), 
which generated tracks for the required 4-h patrol time. 
The sd0 argument in the function was set to 0.99 and 0.3 to 
produce realistic driving and walking tracks (respectively) 
in terms of shape and length, although the length varied due 
to the random way the tracks were created (~23–28 km for 
random drive and ~6–9 km for walking). 

With respect to patrol time, we ran the simulations over 
2 × 4-h blocks starting at 0800 and 0000 hours. This 
ensured simulations included most hours typically covered 
by a spotlighting patrol. Rather than select dates randomly 
for patrols, we ran simulations for every night for which 
overlapping spatio-temporal data existed for four cats 
(n = 114 nights). Simulations were run for existing and new 
fixed patrols twice per night (starting at 0800 and 0000 hours) 
on every night. Every cross country patrol started at a new 
random location along existing and new roads, and then 
proceeded over random trajectories for each of the 2 × 4-h 
blocks (also starting at 0800 and 0000 hours). 

The habitat utilisation rasters generated for the trapping 
simulations do not have high precision time values, which 
are critical for the temporally dynamic shooting simulations. 
As such, for the shooting simulations, for each date we 
converted the relevant cat and patrol spatial data to a series 
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of time-stamped trajectories (i.e. lines between temporally 
adjacent points). Pairwise distances between temporally 
coincident trajectories (within 60-s windows) were calculated 
using the function avedistTrack (Pebesma et al. 2021). 
Pairwise distances less than 300 m were kept; 300 m was 
chosen based on the estimated typical maximum range that 
cat eye shine can be detected by spotlight in our open study 
area. Only one distance (the shortest) was kept for 
sequential runs of detections (≤1 min) for each cat. 

We modelled the effect of patrol class and hour of the night 
(both treated as categorical predictors) on whether or not cats 
were detected in each hour of the patrols (binomial response) 
using multiple logistic regression with binomial error 
distribution, using the R function stats::glm. We compared 
models that included each predictor separately and their 
interactions. The effect of patrol frequency was estimated 
based on logistic regression coefficients of the model with 
the lowest AICc value. The response variable was converted 
to cat detections per hour for plotting. 

Results 

Trapping and data acquisition 

Eleven cats were caught (10 in footholds and one in a cage) 
between 5 August 2019 and 8 July 2020 over 1335 trap 
nights. Two SPOT units failed to produce any useful data 
and lasted less than 1 or 2 days, which could have been 
caused by unit failure or a disruption to power. 

Habitat selection 

We obtained usable data from nine individual cats (three 
females and six males), with 8313 fixes 1 h or more apart. 
After considering only steps between 1 and 3 h apart, 6893 
steps were included in the analysis. For the step selection 
models, the most parsimonious (i.e. delta AICc <4) model 
of cat habitat selection included both vegetation classes 
and proximity to roads (Table 2). Within the top model 
(Table 3, Fig. 2), spinifex and sparsely vegetated habitats were 
not significantly selected over gibber habitats, escarpments 
and flats with scattered vegetation were selected more signifi-
cantly, and alluvial and riparian habitats were substantially 
and significantly selected. Riparian habitats were selected 
almost three-fold over gibber habitats. Areas within 25 m 
of roads were avoided. 

Trapping simulations 

Simulations involving 1–50 randomly placed traps for six cats 
over 623 tracking days, repeated 100 times, generated 
>1.9 million values for trap encounter probabilities greater 
than the 0.01 probability threshold used to define trap 
encounters. Qualitatively, the time it took cats to encounter 

Table 2. Model selection table for step selection functions of cat 
habitat selection in the study area. 

Model description d.f. logLik AICc Delta Weight 

Vegetation, road 9 −22 333.5 44 685.1 0.00 0.957 

Vegetation 8 −22 337.9 44 691.8 6.70 0.034 

Vegetation × day, road 15 −22 332.2 44 694.5 9.33 0.009 

Vegetation × day 14 −22 336.6 44 701.2 16.09 0.000 

Null model 1 −22 561.2 45 124.4 439.24 0.000 

‘Vegetation’ is habitat classed into nine categories (Table 1), ‘day’ is whether fix 
was during the day or night, and ‘road’ is whether fix was within 25 m of a recently 
graded road (i.e. within 2 years). ‘d.f.’ is degrees of freedom, ‘logLik’ is log-
likihood, ‘AICc’ is Akaike Information Criterion corrected for small sample 
size, ‘delta’ is distance from the model with lowest AICc score, and ‘weight’ is 
Akaike weight (essentially the probability the model is the most parsimonious 
from the set of models). 

traps reduced rapidly with an increasing number of traps 
up until about 10 traps, after which it tailed off slowly 
(Fig. 3). Manual placement of traps at drainage pinch points 
approximately halved the time it took cats to encounter traps 
(7.5 ± 6.3 days cf. 14.8 ± 12.6 days respectively for five traps 
at pinch points and five traps randomly placed along 
drainages). 

Spotlighting simulations 

Spotlighting was simulated for 114 nights over the six track 
classes (5472 spotlighting hours), and these generated 255 
detections (as defined by cats being <300 m within a 60 s 
window of the observer, Fig. 4). The model with the lowest 
AICc value was one that included non-interacting terms for 
hour and track class. Detections were significantly lower in 
the hour between 0100 and 0200 hours (coefficient 
estimate = −0.86, Z = −2.78, P = 0.005). Walking from 
the existing track resulted insignificantly fewerdetections 
(coefficient estimate = −0.85, Z = −2.46, P = 0.014). 
Significantly more cats were detected by driving along the 
new track (coefficient estimate = 1.12, Z = 5.96, 
P < 0.0001). All other track classes had no effect on cat 
detection. 

Discussion 

Two potential limitations of our approach should be initially 
highlighted. First, that our sample size of nine tracked cats 
could be too small to provide reliable inferences for the 
whole cat population in and around Pullen Pullen where 
night parrots occur. Second, it may be inferred from our 
approach that future management needs to track cats prior 
to any control session, rather than just reviewing the local 
landscape and habitat patterns. In the first instance, 
although small, we argue that our sample was 
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Table 3. Details of the top model (Table 2), including each of the vegetation and road categories (variable description), their coefficients (coef), the 
odds-ratio against gibber habitat (exp(coef)), associated standard error (s.e.(coef)), confidence intervals (Lower 95%CI and Upper 95%CI, on the 
response scale exp(coef)), and significance within the model (Z and P, where ** is 0.001 ≤ P ≤ 0.01 and *** is P ≤ 0.001). 

Variable description Coef Exp(coef) s.e.(coef) Lower 95%CI Upper 95%CI Z P 

Flats–sparse 0.204 1.226 0.059 0.936 1.632 1.441 0.150 

Flats–medium 0.306 1.358 0.064 1.044 1.688 2.737 0.006 ** 

Spinifex 0.251 1.286 0.085 0.935 1.627 1.745 0.081 

Rocky woodland −1.719 0.179 1.005 0.120 0.187 −13.474 <0.001 *** 

Escarpment 0.287 1.332 0.065 1.050 1.707 2.427 <0.001 *** 

Alluvial–medium 0.611 1.842 0.059 1.614 2.192 8.622 <0.001 *** 

Alluvial–dense 0.678 1.969 0.057 1.408 2.769 3.996 <0.001 *** 

Riparian 1.030 2.802 0.079 2.176 3.801 7.527 <0.001 *** 

Road −0.696 0.498 0.253 0.337 0.850 −2.986 <0.001 *** 

Fig. 2. Habitat selectivity of feral cats in central Queensland using odds ratios (including 95% 
confidence intervals). Odds ratio coefficients are presented and relative to the habitat class ‘gibber’. 

representative of the population; we tracked three females 
(2.6–3 kg) and six males (3.2–4.5 kg), and these were all 
trapped using scent as opposed to food, which can result in 
a biased sample (Gorney et al. 1999). Additionally, the GPS 
data obtained from the nine cats werevery detailed, covering 
multiple seasons, and they revealed patterns of habitat use 
consistent with camera trap data from the same study area 
(authors S. Murphy, H. McGregor and A. Kutt, unpubl. 
data). Similarly, our results are also consistent with other 
studies from the arid zone (Moseby et al. 2009; Doherty 
et al. 2015). As such, we believe that inferences about cat 
movements for our study area are sound. On the second 

point, we feel that future management within the region 
involving similar habitats could confidently draw useful 
inferences from our results. We also recognise that cat 
control in different environments (e.g. savanna woodland) 
would benefit from local cat tracking information to refine 
management, and any long term management strategy 
should review their approach regularly, as new data are 
obtained. 

We found feral cats to be wide ranging and to use most 
habitats in the area around the Queensland population of 
night parrots; they were also most likely to select for 
riparian and other productive (e.g. floodplain) habitats. 
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Fig. 3. The effect of trap number on how quickly a cat encounters a 
trap (expressed as mean number of days to encounter) for 1–50 traps 
placed randomly along drainage lines. Shaded area is mean days ± one 
standard deviation. 

Most concerning, but not surprisingly, feral cats were also 
recorded frequently moving through habitats associated 
with night parrots i.e. dense spinifex and gibber plains. 
Only rocky woodlands and roads were avoided by cats, the 
latter being a significant result because tracks and roads are 
often the locations where cat monitoring and control is 
focussed (Wysong et al. 2020). This suggests that in this 
arid environment, trapping and monitoring for feral cats is 
best targeted in alluvial areas. 

Previous studies have suggested that in the arid zone, feral 
cats often use locations where there is a high density of 
vegetation cover (Moseby et al. 2009). Feral cats are also 
known to shelter in trees in this region, especially in 
summer and when there is heightened abundance caused 
by resource pulses (Pettigrew 1993). In addition, native 
predators such as dingoes frequently use roads and tracks 
(Vernes et al. 2001), and there might be a degree of habitat 
separation through meso-predator suppression that affects 
feral cat behaviour and distribution. Understanding how 
predators use the landscape is a critical means of more 
targeted and effective management and control (Bengsen 
et al. 2012). 

Using the information on movement and habitat use 
obtained from the GPS collared feral cats, we simulated 
how trapping could be improved. The relative cost and 
effectiveness of feral cat management is an important 
consideration for land managers (Nutter et al. 2004; Lohr 
and Algar 2020). The results from trapping simulations 
demonstrated that trap encounter probability was very 
variable, even for large numbers of traps. For the random 
placements (although still constrained to drainage lines), 
some simulation iterations did not produce their first 
encounter for long periods, even when large numbers of 
traps were involved. For example, one simulation using 50 
traps took 17 days to yield the first trap encounter for any 
of the six cats. In the case of the night parrot reserve, 

Fig. 4. Feral cat detection rate for simulated spotlighting patrols along various pathway scenarios. ‘Car along 
existing’ was a vehicle patrol along an existing track; ‘Car along new’ was a vehicle patrol along a hypothetical new 
track parallel to drainage lines; ‘Car from existing’ was a cross-country vehicle patrol that started from a random 
point along an existing track; ‘Car from new’ was a cross-country vehicle patrol that started from a random point 
along a hypothetical new track parallel to drainage lines; ‘Walk from existing’ was a cross-country walking patrol 
that started from a random point along an existing track; and ‘Walk from new’ was a cross-country walking patrol 
that started from a random point along a hypothetical new track parallel to drainage lines. Error bars are standard 
error. 
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where this study took place, the property does not have 
permanent staff on-site and, as such, most visits by manage-
ment are rarely longer than 10–12 days; this illustrates the 
mismatch and potential ineffectiveness of trapping and the 
importance for evidence-based control approaches (Doherty 
and Ritchie 2017). By comparison, manual trap placement 
on drainage lines at pinch points, where the naturally 
braided channels converged into more narrow pathways, 
generated encounters more quickly (for example, mean time 
to first encounter for five random traps was 14.8 ± 12.6 days 
compared with 7.5 ± 6.3 days for five manually placed traps). 
We recommend that managers use high-resolution satellite 
imagery to help guide trap placement at such locations 
prior to field operations. 

Similarly, with the shooting simulations, the use of existing 
property tracks were not the optimal pathways for targeting 
feral cat control. Track based surveys for feral predators 
are generally considered the most efficient and standard 
manner to find and estimate abundance in remote arid 
landscapes owing to the ease of transit and the large 
distances that can be covered (Edwards et al. 2000). However, 
in our study, using knowledge of the spatial and temporal 
movement of feral cats at the night parrot reserve, the use 
of existing tracks with vehicle patrols resulted in a low 
number of detections. In contrast, a hypothetical new vehicle 
track positioned to run parallel to main drainage lines (i.e. 
using the combined knowledge of cat habitat preferences 
and shooting simulations) in the study area resulted in a 
threefold increase in cat detection rate. This suggests one 
option for future feral cat management is either to undertake 
patrols off track and in parallel to these drainage lines, or 
to grade new tracks in locations that maximise feral cat 
encounters. 

From a management perspective, the relative benefits, 
or potential costs, of the creation of new tracks, how 
these tracks are then maintained, and potential unforeseen 
outcomes like increased weed incursion or increased dingo 
use of this infrastructure potentially affecting cat behaviour, 
need to be considered (Oppel et al. 2014). In addition, if 
cats are avoiding roads due to vehicles and shooting 
frequency, the benefit of a new track could decline. As 
these roads are theoretically cat management tracks only, 
the frequency of use over time could be moderated to quell 
any effect of sensitising cats to their use. Another 
alternative is to undertake more random car or walking 
patrols on cross-country tracks (meaning without a formed 
or graded track) targeting riparian locations; but both car 
and walking patrols yielded considerably fewer mean 
number of detections than new tracks along known cat 
movement routes. 

This study has demonstrated that feral cats are found 
throughout the region occupied by night parrots and use 
similar habitats, despite a preference for riparian zones. 
This separation in preferred habitat (i.e. cats in treed 
drainage lines) provides some comfort with respect to a 

reduced probability of regular interactions and predation. 
Feral cats in this region are known to undergo sporadic 
weather and prey mediated population booms and congregate 
in the shelter of riparian vegetation (Pettigrew 1993; Palmer 
1999). Feral cats also rest at night in riparian trees (S. Murphy, 
H. McGregor and A. Kutt, unpubl. data). These findings 
are also useful for inferring the cat predation risk to other 
threatened species that occur on the reserve and the 
likelihood of encounter, given the knowledge of feral cat 
habitat use and the distribution of other species (Kearney 
et al. 2021; Kutt et al. 2021). 

The adaptation of management in response to new 
knowledge is a critical component of feral predator control 
(Lohr and Algar 2020) and adaptive management is the 
foundation underpinning the activities of many not-for-
profit conservation organisations (Carr et al. 2017). In this 
case, we have demonstrated that more effective management 
can be potentially achieved by explicitly linking knowledge of 
the behaviour of a species to more targeted on-ground action. 
We note some further applied research that would enhance 
the understanding of effective feral cat control, such as an 
understanding of the proficiency of a shooter and the types 
of optics used in scopes (i.e. infra-red or thermal), the type 
of trap arrays, lures and baits used, and examination of 
long term weather patterns preceding the control, including 
the distribution of prey in the landscape (Reynolds and 
Tapper 1996). In the present study, we simply assumed that 
a cat is recorded, trapped or removed when detected, even 
though there is a wide range of factors that influence the 
success of lethal control. This study presents a clear example 
of how to manage invasive predators using a combination of 
ecological knowledge and scenario-based adaptive manage-
ment (Doherty and Ritchie 2017) more effectively. 

Supplementary material 

Supplementary material is available online. 
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